论文标题
根据深度学习的水下源本地化的主要成分分析的特征选择
Feature Selection based on Principal Component Analysis for Underwater Source Localization by Deep Learning
论文作者
论文摘要
在本文中,我们提出了一种基于主成分分析(PCA)和主成分回归(PCR)的可解释特征选择方法,该方法可以通过仅引入源位置而没有其他先前信息来提取水下源本地化的重要特征。此功能选择方法与基于半监督学习方案的水下源本地化的两步框架结合使用。在框架中,第一步利用卷积自动编码器从整个可用数据集中提取潜在功能。第二步通过在数据集的有限标记部分训练的编码器多层感知器(MLP)执行源本地化。所提出的方法已在公共数据集SWLLEX-96事件S5上进行了验证。结果表明该框架对看不见的数据具有吸引人的准确性和鲁棒性,尤其是当用于训练的数据逐渐减少时。选择功能之后,不仅训练阶段的加速度为95 \%,而且当用于训练的标记数据的数量极为有限时,该框架的性能在深度和更准确性上变得更加稳健。
In this paper, we propose an interpretable feature selection method based on principal component analysis (PCA) and principal component regression (PCR), which can extract important features for underwater source localization by only introducing the source location without other prior information. This feature selection method is combined with a two-step framework for underwater source localization based on the semi-supervised learning scheme. In the framework, the first step utilizes a convolutional autoencoder to extract the latent features from the whole available dataset. The second step performs source localization via an encoder multi-layer perceptron (MLP) trained on a limited labeled portion of the dataset. The proposed approach has been validated on the public dataset SwllEx-96 Event S5. The result shows the framework has appealing accuracy and robustness on the unseen data, especially when the number of data used to train gradually decreases. After feature selection, not only the training stage has a 95\% acceleration but the performance of the framework becomes more robust on the depth and more accurate when the number of labeled data used to train is extremely limited.