论文标题

共鸣:在实时通信中使用上下文感知模型代替软件常数

Resonance: Replacing Software Constants with Context-Aware Models in Real-time Communication

论文作者

Gupchup, Jayant, Aazami, Ashkan, Fan, Yaran, Filipi, Senja, Finley, Tom, Inglis, Scott, Asteborg, Marcus, Caroll, Luke, Chari, Rajan, Cozowicz, Markus, Gopal, Vishak, Prakash, Vinod, Bendapudi, Sasikanth, Gerrits, Jack, Lau, Eric, Liu, Huazhou, Rossi, Marco, Slobodianyk, Dima, Birjukov, Dmitri, Cooper, Matty, Javar, Nilesh, Perednya, Dmitriy, Srinivasan, Sriram, Langford, John, Cutler, Ross, Gehrke, Johannes

论文摘要

大型软件系统调整数百个“常数”以优化其运行时性能。这些值通常是通过直觉,实验室测试或A/B测试得出的。 “一定大小”的方法通常是最佳选择,因为最佳价值取决于运行时上下文。在本文中,我们提供了一种实验方法来替代Skype的学习上下文功能 - 一种广泛使用的实时通信(RTC)应用程序。我们提出共鸣,这是基于上下文匪徒(CB)的系统。我们描述了三个现实世界实验的经验:将其应用于Skype中的音频,视频和传输组件。我们在使用封装原理编写的大型软件系统中表演机器学习(ML)推断的独特而实用的挑战。最后,我们开放源代码专家经纪,这是一个库,旨在减少在此类开发环境中采用ML模型时的摩擦

Large software systems tune hundreds of 'constants' to optimize their runtime performance. These values are commonly derived through intuition, lab tests, or A/B tests. A 'one-size-fits-all' approach is often sub-optimal as the best value depends on runtime context. In this paper, we provide an experimental approach to replace constants with learned contextual functions for Skype - a widely used real-time communication (RTC) application. We present Resonance, a system based on contextual bandits (CB). We describe experiences from three real-world experiments: applying it to the audio, video, and transport components in Skype. We surface a unique and practical challenge of performing machine learning (ML) inference in large software systems written using encapsulation principles. Finally, we open-source FeatureBroker, a library to reduce the friction in adopting ML models in such development environments

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源