论文标题
结构理论和稳定等级的c* - 有限高级图的代数
Structure theory and stable rank for C*-algebras of finite higher-rank graphs
论文作者
论文摘要
我们研究了有限高级图的C* - 代数的稳定等级。当k-graph包含一个带有入口的循环,或者是海岸的,我们完全确定了C*-Algebra的稳定等级。我们还准确确定了哪些有限的局部凸形k-graphs产生稳定的有限C* - 代数。我们举了几个例子来说明我们的结果。
We study the structure and compute the stable rank of C*-algebras of finite higher-rank graphs. We completely determine the stable rank of the C*-algebra when the k-graph either contains no cycle with an entrance, or is cofinal. We also determine exactly which finite, locally convex k-graphs yield unital stably finite C*-algebras. We give several examples to illustrate our results.