论文标题

$ l^{p} $估算和加权估计值的最大粗糙奇异积分的均匀组的加权估计值

$L^{p}$ estimates and weighted estimates of fractional maximal rough singular integrals on homogeneous groups

论文作者

Chen, Yanping, Fan, Zhijie, Li, Ji

论文摘要

在本文中,我们研究了$ l^{p} $有界和$ l^{p}(w)$界($ 1 <$ 1 <p <p <\ infty $和$ w $ a muckenhoupt $ a_ {p} $ a_ {p} $重量)分数最大值的奇数集成运算符$ t_, $ω(x)$在任意同质组$ \ mathbb h $ dimension $ \ mathbb {q} $的$。我们表明,如果$ 0 <α<\ mathbb {q} $,$ω\ in l^{1}(σ)$,并且满足订单$ [α] $的取消条件,那么对于任何$ 1 <p <\ p <\ infty $,\ \ | t_ {ω,α}^{\#} f \ | _ {l^{l^{p}(\ Mathbb {h})} \ simsim \ | | | | | _ | _ {l^{l^{l^{1}(σ)}(σ)}} \ end {align*}在情况下$α= 0 $,tao(\ cite {tao})和sato(\ cite {sato})研究了粗糙单数积分运算符及其最大运算符的$ l^p $界限。 我们还为这些操作员获得了定量加权绑定。具体而言,如果$ 0 \leqα<\ mathbb {q} $和$ω$满足相同的取消条件,但是对于某些$ q>> \ mathbb {q} Q}/α$的$ q>>>> \ qu>> \ mathbb {q}/α$的$ω\ in l^{q}(σ)$都更强\ begin {align*} \ | t_ {ω,α}^{\#} f \ | _ {l^{p}}(w)} \ lyseSim \ | |ω\ | ___ {l^{l^{ q}(σ)} \ {w \} _ {a_p}(w)_ {a_p} \ | f \ | _ {l_α^{p} {p}(w)},\ \ \ 1 <p <\ infty。 \ end {align*}

In this paper, we study the $L^{p}$ boundedness and $L^{p}(w)$ boundedness ($1<p<\infty$ and $w$ a Muckenhoupt $A_{p}$ weight) of fractional maximal singular integral operators $T_{Ω,α}^{\#}$ with homogeneous convolution kernel $Ω(x)$ on an arbitrary homogeneous group $\mathbb H$ of dimension $\mathbb{Q}$. We show that if $0<α<\mathbb{Q}$, $Ω\in L^{1}(Σ)$ and satisfies the cancellation condition of order $[α]$, then for any $1<p<\infty$, \begin{align*} \|T_{Ω,α}^{\#}f\|_{L^{p}(\mathbb{H})}\lesssim\|Ω\|_{L^{1}(Σ)}\|f\|_{L_α^{p}(\mathbb{H})}, \end{align*} where for the case $α=0$, the $L^p$ boundedness of rough singular integral operator and its maximal operator were studied by Tao (\cite{Tao}) and Sato (\cite{sato}), respectively. We also obtain a quantitative weighted bound for these operators. To be specific, if $0\leqα<\mathbb{Q}$ and $Ω$ satisfies the same cancellation condition but a stronger condition that $Ω\in L^{q}(Σ)$ for some $q>\mathbb{Q}/α$, then for any $1<p<\infty$ and $w\in A_{p}$, \begin{align*} \|T_{Ω,α}^{\#}f\|_{L^{p}(w)}\lesssim\|Ω\|_{L^{q}(Σ)}\{w\}_{A_p}(w)_{A_p}\|f\|_{L_α^{p}(w)},\ \ 1<p<\infty. \end{align*}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源