论文标题

核心亚频泊泊术

The Poisson saturation of coregular submanifolds

论文作者

Geudens, Stephane

论文摘要

本文致力于泊松几何形状中的核心尺寸。我们表明他们的局部泊松饱和度是一个嵌入式泊松submanifold,我们为围绕Coregular Submanifold的Poisson Submanifold提供了正常的形式。该结果恢复了泊松横向周围的正常形式,并产生了在符号几何形状中恒定等级亚策略周围某些正常形式/刚度结果的泊松版本。作为一种应用,我们证明了关于泊松歧管中狄拉克歧管的共同体嵌入的唯一性结果。我们还展示了我们的结果如何推广到dirac几何形状中核心尺寸的设置。

This paper is devoted to coregular submanifolds in Poisson geometry. We show that their local Poisson saturation is an embedded Poisson submanifold, and we give a normal form for this Poisson submanifold around the coregular submanifold. This result recovers the normal form around Poisson transversals, and it yields Poisson versions of some normal form/rigidity results around constant rank submanifolds in symplectic geometry. As an application, we prove a uniqueness result concerning coisotropic embeddings of Dirac manifolds in Poisson manifolds. We also show how our results generalize to the setting of coregular submanifolds in Dirac geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源