论文标题
联合任务卸载和物联网边缘计算的资源分配,并具有顺序的任务依赖性
Joint Task Offloading and Resource Allocation for IoT Edge Computing with Sequential Task Dependency
论文作者
论文摘要
将移动边缘计算(MEC)合并到物联网(IoT)中,使资源有限的IoT设备可以将其计算任务卸载到附近的边缘服务器。在本文中,我们调查了由MEC技术及其计算任务辅助任务依赖性依赖性的IoT系统,这对于视频流处理和其他智能应用程序至关重要。在限制任务处理延迟的同时,在慢速和快速褪色的渠道下共同优化了任务处理策略,通信资源和计算资源,以最大程度地限制每个物联网设备的能耗。在缓慢褪色的通道中,提出了一个优化问题,该问题是非凸的,涉及一个整数变量。为了解决这个具有挑战性的问题,我们将其分解为对任务卸载决策问题的一维搜索,而任务卸载决策的非凸优化问题。通过数学操纵,非凸问题被转化为凸的问题,只有使用简单的金搜索方法才能溶解。在快速褪色的频道中,即使纠缠在一起,也会得出最佳的在线政策,具体取决于即时通道状态。此外,事实证明,当频道连贯时间较低时,派生的策略将收敛到离线策略,这可以帮助节省额外的计算复杂性。数值结果验证了我们的分析的正确性以及我们提出的策略对现有方法的有效性。
Incorporating mobile edge computing (MEC) in Internet of Things (IoT) enables resource-limited IoT devices to offload their computation tasks to a nearby edge server. In this paper, we investigate an IoT system assisted by the MEC technique with its computation task subjected to sequential task dependency, which is critical for video stream processing and other intelligent applications. To minimize energy consumption per IoT device while limiting task processing delay, task offloading strategy, communication resource, and computation resource are optimized jointly under both slow and fast fading channels. In slow fading channels, an optimization problem is formulated, which is non-convex and involves one integer variable. To solve this challenging problem, we decompose it as a one-dimensional search of task offloading decision problem and a non-convex optimization problem with task offloading decision given. Through mathematical manipulations, the non-convex problem is transformed to be a convex one, which is shown to be solvable only with the simple Golden search method. In fast fading channels, optimal online policies depending on instant channel state are derived even though they are entangled. In addition, it is proved that the derived policy will converge to the offline policy when channel coherence time is low, which can help to save extra computation complexity. Numerical results verify the correctness of our analysis and the effectiveness of our proposed strategies over existing methods.