论文标题
使用固体固体马氏体转化的高容量高功率热量储存
High-Capacity High-Power Thermal Energy Storage Using Solid-Solid Martensitic Transformations
论文作者
论文摘要
增加导热率的增强,以提高固定相相变热能量存储模块中的热功率会损害体积能密度,并且通常会使活动相变材料(PCM)的质量和体积降低一半以上。在这项研究中,证明了使用高导体,固体,形状的记忆合金来构建热量储能模块的新概念,以消除这种折衷和启用具有高热传递速率和高热容量的设备。镍钛,Ni50.28TI49.36,使用差分扫描量热法和Xenon闪光进行了溶液处理和表征,以确定转化温度(78DEG-C),潜热(183 kJM-3)(183 kJM-3),以及在奥氏体和马丁岩和mart虫相(12.92/12.62/12.64 Wm-1k)中的热导率和热导率。在热流体测试设置中设计,制造和测试了四个平行板热储能演示器。 These included a baseline sensible heating module (aluminum), a conventional solid-liquid PCM module (aluminum/1-octadecanol), an all-solid-solid PCM module (Ni50.28Ti49.36), and a composite solid-solid/solid-liquid PCM module (Ni50.28Ti49.36/1-octadecanol).通过使用高导度固相PCM,并消除了对封装和电导率增强的需求,我们能够证明体积热容量的1.73-3.38倍,与常规方法相比,功率密度提高了2.03-3.21倍。这些实验结果通过分析模型增强,以解释观察到的传热物理,并显示热时间常数的5.86倍。这项工作证明了使用多功能形状内存合金构建高容量和高功率热储能模块的能力,并为前进的速度改进了热量储能性能。
Adding thermal conductivity enhancements to increase thermal power in solid-liquid phase-change thermal energy storage modules compromises volumetric energy density and often times reduces the mass and volume of active phase change material (PCM) by well over half. In this study, a new concept of building thermal energy storage modules using high-conductivity, solid-solid, shape memory alloys is demonstrated to eliminate this trade-off and enable devices that have both high heat transfer rate and high thermal capacity. Nickel titanium, Ni50.28Ti49.36, was solution heat treated and characterized using differential scanning calorimetry and Xenon Flash to determine transformation temperature (78deg-C), latent heat (183 kJm-3), and thermal conductivity in the Austenite and Martensite phases (12.92/12.64 Wm-1K-1). Four parallel-plate thermal energy storage demonstrators were designed, fabricated, and tested in a thermofluidic test setup. These included a baseline sensible heating module (aluminum), a conventional solid-liquid PCM module (aluminum/1-octadecanol), an all-solid-solid PCM module (Ni50.28Ti49.36), and a composite solid-solid/solid-liquid PCM module (Ni50.28Ti49.36/1-octadecanol). By using high-conductivity solid-solid PCMs, and eliminating the need for encapsulants and conductivity enhancements, we are able to demonstrate a 1.73-3.38 times improvement in volumetric thermal capacity and a 2.03-3.21 times improvement in power density as compared to the conventional approaches. These experimental results are bolstered by analytical models to explain the observed heat transfer physics and reveal a 5.86 times improvement in thermal time constant. This work demonstrates the ability to build high-capacity and high-power thermal energy storage modules using multifunctional shape memory alloys and opens the door for leap ahead improvement in thermal energy storage performance.