论文标题

迈向洛瓦斯斯本地引理

Towards the sampling Lovász Local Lemma

论文作者

Jain, Vishesh, Pham, Huy Tuan, Vuong, Thuy Duong

论文摘要

令$φ=(v,\ mathcal {c})$是变量上的约束满意度问题,$ v_1,\ dots,v_n $,使每个约束都取决于最多$ k $变量,因此每个变量最多在大小$ [q] $的字母内假设值。假设每个约束最多都会与$δ$约束,并且每个约束最多都违反了$ p $的概率(在其变量上的产品度量下)。我们表明,对于$ k,q = o(1)$,有一种确定性的多项式时间算法,大约计算令人满意的作业数和一个随机的,多项式的时间算法,以大约从满足分配的均匀分布中进行样品,但前提是,前提是\ [c \ cdot q^{3} \ cdot cd^cd^cd^cd^cd^cd^^cd pot poc cd pot poc cd^cd^cd pot poc cd pot poc cd. \ quad \ text {其中} c \ text {是一个绝对常数。} \]之前,此形式的结果仅在特殊情况下才知道,当每个约束恰好违反其变量的一个分配时。 对于$ k $ -cnf公式的特殊情况,$δ^{7} $改善了以前最著名的$δ^{60} $用于确定性算法[Moitra,j.acm,2019]和$δ^{13} $的随机算法[Feng等[Feng et al。,Arxiv,2020]。对于适当的$ q $ - 颜色$ k $均匀的超图的特殊情况,术语$δ^{7} $改善了以前最著名的$Δ^{14} $用于确定性算法[Guo等,Sicomp,sicomp,2019]和$δ^{9} $ for Algolibled Algorithms algorithms al。

Let $Φ= (V, \mathcal{C})$ be a constraint satisfaction problem on variables $v_1,\dots, v_n$ such that each constraint depends on at most $k$ variables and such that each variable assumes values in an alphabet of size at most $[q]$. Suppose that each constraint shares variables with at most $Δ$ constraints and that each constraint is violated with probability at most $p$ (under the product measure on its variables). We show that for $k, q = O(1)$, there is a deterministic, polynomial time algorithm to approximately count the number of satisfying assignments and a randomized, polynomial time algorithm to sample from approximately the uniform distribution on satisfying assignments, provided that \[C\cdot q^{3}\cdot k \cdot p \cdot Δ^{7} < 1, \quad \text{where }C \text{ is an absolute constant.}\] Previously, a result of this form was known essentially only in the special case when each constraint is violated by exactly one assignment to its variables. For the special case of $k$-CNF formulas, the term $Δ^{7}$ improves the previously best known $Δ^{60}$ for deterministic algorithms [Moitra, J.ACM, 2019] and $Δ^{13}$ for randomized algorithms [Feng et al., arXiv, 2020]. For the special case of properly $q$-coloring $k$-uniform hypergraphs, the term $Δ^{7}$ improves the previously best known $Δ^{14}$ for deterministic algorithms [Guo et al., SICOMP, 2019] and $Δ^{9}$ for randomized algorithms [Feng et al., arXiv, 2020].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源