论文标题
有界带宽的时间优化量子变换
Time-optimal quantum transformations with bounded bandwidth
论文作者
论文摘要
在本文中,我们在将量子系统转换为一个状态的时间中,得出了尖锐的下限,也称为量子速度限制,以至于可观察到的是其最低的平均值。我们假设该系统最初是相对于可观察到的不一致的状态,并且该状态根据von Neumann方程与Hamiltonian的带宽均匀边界演变。转换时间复杂地取决于可观察到的特征谱和相关本特征空间的相对星座。因此,找到量子速度的问题因此将需要不同策略的不同案例分为不同的情况。我们在许多情况下得出了量子速度限制,并且同时开发了一种将复杂案例分解为可管理的方法。这些推导涉及组合和差异几何技术。我们还研究了多部分系统,并表明允许零件之间的相关性可以加快转换时间。在最后一部分中,我们使用量子速度极限来获得可以从量子电池中提取能量的功率上的上限。
In this paper, we derive sharp lower bounds, also known as quantum speed limits, for the time it takes to transform a quantum system into a state such that an observable assumes its lowest average value. We assume that the system is initially in an incoherent state relative to the observable and that the state evolves according to a von Neumann equation with a Hamiltonian whose bandwidth is uniformly bounded. The transformation time depends intricately on the observable's and the initial state's eigenvalue spectrum and the relative constellation of the associated eigenspaces. The problem of finding quantum speed limits consequently divides into different cases requiring different strategies. We derive quantum speed limits in a large number of cases, and we simultaneously develop a method to break down complex cases into manageable ones. The derivations involve both combinatorial and differential geometric techniques. We also study multipartite systems and show that allowing correlations between the parts can speed up the transformation time. In a final section, we use the quantum speed limits to obtain upper bounds on the power with which energy can be extracted from quantum batteries.