论文标题

在自适应攻击下3D点云分类的对抗鲁棒性

On Adversarial Robustness of 3D Point Cloud Classification under Adaptive Attacks

论文作者

Sun, Jiachen, Koenig, Karl, Cao, Yulong, Chen, Qi Alfred, Mao, Z. Morley

论文摘要

3D点云在各种安全至关重要的应用中扮演着关键角色,例如自动驾驶,这希望潜在的深层神经网络对对抗性扰动非常有力。尽管已经提出了一些针对对抗点云分类的防御,但尚不清楚它们是否真正强大地适应了适应性攻击。为此,我们对最先进的防御措施和设计适应性评估进行了首次安全分析。我们的100%自适应攻击成功率表明当前的对策仍然很脆弱。由于对抗训练(AT)被认为是最强大的防御,因此我们提出了第一个深入的研究,该研究表明在点云分类中的行为如何,并确定所需的对称函数(汇总操作)对于3D模型的鲁棒性至关重要。通过我们的系统分析,我们发现默认使用的固定池(例如,最大池)通常会在Point Cloud分类中的有效性削弱。有趣的是,我们进一步发现,基于排序的参数池可以显着改善模型的鲁棒性。基于上述见解,我们提出了深层对称的合并操作,以在不牺牲标称准确性的情况下将稳健性提高到47.0%的稳健性,胜过原始设计,并且强劲的基线高28.5%($ \ sim \ sim 2.6 \ tims $),分别在点网中分别为6.5%。

3D point clouds play pivotal roles in various safety-critical applications, such as autonomous driving, which desires the underlying deep neural networks to be robust to adversarial perturbations. Though a few defenses against adversarial point cloud classification have been proposed, it remains unknown whether they are truly robust to adaptive attacks. To this end, we perform the first security analysis of state-of-the-art defenses and design adaptive evaluations on them. Our 100% adaptive attack success rates show that current countermeasures are still vulnerable. Since adversarial training (AT) is believed as the most robust defense, we present the first in-depth study showing how AT behaves in point cloud classification and identify that the required symmetric function (pooling operation) is paramount to the 3D model's robustness under AT. Through our systematic analysis, we find that the default-used fixed pooling (e.g., MAX pooling) generally weakens AT's effectiveness in point cloud classification. Interestingly, we further discover that sorting-based parametric pooling can significantly improve the models' robustness. Based on above insights, we propose DeepSym, a deep symmetric pooling operation, to architecturally advance the robustness to 47.0% under AT without sacrificing nominal accuracy, outperforming the original design and a strong baseline by 28.5% ($\sim 2.6 \times$) and 6.5%, respectively, in PointNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源