论文标题

用于机器人地形分类的半监督门控复发性神经网络

Semi-supervised Gated Recurrent Neural Networks for Robotic Terrain Classification

论文作者

Ahmadi, Ahmadreza, Nygaard, Tønnes, Kottege, Navinda, Howard, David, Hudson, Nicolas

论文摘要

由于他们可以采用的各种运动策略,腿部机器人是在具有挑战性的地形中进行任务的流行候选人。地形分类是自主腿机器人的重要促进技术,因为它允许机器人利用其天生的灵活性,以使其行为适应其操作环境的需求。在本文中,我们展示了高度能力的机器学习技术,即封闭的复发神经网络,使我们的目标腿机器人能够正确地对其在受监督和半监督的时尚中正确地对其进行分类。基准数据集的测试表明,我们的时间域分类器能够与具有少量标签的原始长度和可变长度数据打交道,并且执行远远超过频域分类器的水平。根据我们自己的扩展数据集的分类结果开辟了一系列针对这些环境的高性能行为。此外,我们展示了如何使用原始未标记的数据来显着改善分类在半监督模型中结果。

Legged robots are popular candidates for missions in challenging terrains due to the wide variety of locomotion strategies they can employ. Terrain classification is a key enabling technology for autonomous legged robots, as it allows the robot to harness their innate flexibility to adapt their behaviour to the demands of their operating environment. In this paper, we show how highly capable machine learning techniques, namely gated recurrent neural networks, allow our target legged robot to correctly classify the terrain it traverses in both supervised and semi-supervised fashions. Tests on a benchmark data set shows that our time-domain classifiers are well capable of dealing with raw and variable-length data with small amount of labels and perform to a level far exceeding the frequency-domain classifiers. The classification results on our own extended data set opens up a range of high-performance behaviours that are specific to those environments. Furthermore, we show how raw unlabelled data is used to improve significantly the classification results in a semi-supervised model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源