论文标题

自主光网络的数据融合辅助遥测层

A Data-Fusion-Assisted Telemetry Layer for Autonomous Optical Networks

论文作者

Liu, Xiaomin, Lun, Huazhi, Gao, Ruoxuan, Cai, Meng, Yi, Lilin, Hu, Weisheng, Zhuge, Qunbi

论文摘要

为了进一步提高光网络的容量和可靠性,首选闭环自主体系结构。考虑到光网络中的大量光学组件以及每个光学收发器中的许多数字信号处理模块,可以收集大量的实时数据。但是,对于传统的监视结构,收集,存储和处理大量数据是具有挑战性的任务。此外,未正确考虑来自不同来源和区域数据之间的数据相关性和相似之处,这可能会限制功能扩展和准确性的提高。为了解决上述问题,本文提出了物理层和控制层之间的数据融合辅助遥测层。数据融合方法在三个不同的级别上进行了详细说明:源级别,空间级别和模型级别。对于每个级别,引入了各种数据融合算法并审查了相关的工作。此外,通过模拟提供了每个级别的概念验证用例,其中显示了数据融合辅助遥测层的好处。

For further improving the capacity and reliability of optical networks, a closed-loop autonomous architecture is preferred. Considering a large number of optical components in an optical network and many digital signal processing modules in each optical transceiver, massive real-time data can be collected. However, for a traditional monitoring structure, collecting, storing and processing a large size of data are challenging tasks. Moreover, strong correlations and similarities between data from different sources and regions are not properly considered, which may limit function extension and accuracy improvement. To address abovementioned issues, a data-fusion-assisted telemetry layer between the physical layer and control layer is proposed in this paper. The data fusion methodologies are elaborated on three different levels: Source Level, Space Level and Model Level. For each level, various data fusion algorithms are introduced and relevant works are reviewed. In addition, proof-of-concept use cases for each level are provided through simulations, where the benefits of the data-fusion-assisted telemetry layer are shown.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源