论文标题
使用网络基础图在大规模城市网络中基于仿真的收费定价优化:方法的交叉比较
Simulation-based Optimization of Toll Pricing in Large-Scale Urban Networks using the Network Fundamental Diagram: A Cross-Comparison of Methods
论文作者
论文摘要
基于仿真的优化(SO或SBO)对于解决具有挑战性的运输网络设计问题变得越来越重要。在本文中,我们建议使用宏观或网络基本图(MFD或NFD)的概念解决两个具有不同复杂性水平的通行定价问题,其中使用了基于大规模的模拟动态交通模型,澳大利亚墨尔本。应用和比较了四种计算有效的SBO方法,包括比例综合(PI)控制器,回归Kriging(RK),分裂矩形(直接)和同时扰动随机近似(SPSA)。比较表明,这些方法在简单的问题上同样奏效,而没有表现出显着的性能差异。但是,对于复杂的问题,RK表现为表现最佳的方法,这要归功于其能够滤除计算机模拟引起的数值噪声(即允许对目标函数的非平滑度)。鉴于PI控制器的收敛速度更快,PI控制器是对简单问题的更具竞争力的解决方案,但该方法在复杂问题中的可扩展性差会导致有限的适用性。但是,两个警告值得强调:(i)NFD所选的关键网络密度不一定代表强大的网络控制或优化阈值,因为它可能会在收费定价的存在下变化; (ii)为了实现全局收敛而需要重新插入作为RK的一部分。
Simulation-based optimization (SO or SBO) has become increasingly important to address challenging transportation network design problems. In this paper, we propose to solve two toll pricing problems with different levels of complexity using the concept of the macroscopic or network fundamental diagram (MFD or NFD), where a large-scale simulation-based dynamic traffic assignment model of Melbourne, Australia is used. Four computationally efficient SBO methods are applied and compared, including the proportional-integral (PI) controller, regressing kriging (RK), DIviding RECTangles (DIRECT), and simultaneous perturbation stochastic approximation (SPSA). The comparison reveals that these methods work equally well on the simple problem without exhibiting significant performance differences. But, for the complex problem, RK manifests itself to be the best-performing method thanks to its capability of filtering out the numerical noise arising from computer simulations (i.e. allowing for non-smoothness of the objective function). While the PI controller is a more competitive solution to the simple problem given its faster rate of convergence, the poor scalability of the method in the complex problem results in limited applicability. Two caveats, however, deserve emphasis: (i) the chosen critical network density of the NFD does not necessarily represent a robust network control or optimization threshold, as it might shift in the presence of toll pricing; and (ii) re-interpolation is required as part of RK in order to achieve global convergence.