论文标题
可变形物体预测模型的顺序拓扑表示
Sequential Topological Representations for Predictive Models of Deformable Objects
论文作者
论文摘要
由于缺乏规范的低维表示以及捕获,预测和控制此类对象的困难,可变形的物体对机器人操作提出了巨大的挑战。我们构建紧凑的拓扑表示,以捕获拓扑不是平凡的高度变形物体的状态。我们开发一种方法,可以跟踪随着时间的推移这种拓扑状态的演变。在几个温和的假设下,我们证明了场景的拓扑及其演变可以从代表场景的点云中恢复。我们的进一步贡献是一种学习预测模型的方法,这些模型将一系列过去的点云观测值作为输入,并预测一系列拓扑状态,以目标/将来的控制作用为条件。我们在模拟中使用高度变形对象进行的实验表明,与从计算拓扑库中获得的相比,所提出的多步预测模型产生的结果更精确。这些模型可以利用各种对象推断出的模式,并提供适合实时应用程序的快速多步骤预测。
Deformable objects present a formidable challenge for robotic manipulation due to the lack of canonical low-dimensional representations and the difficulty of capturing, predicting, and controlling such objects. We construct compact topological representations to capture the state of highly deformable objects that are topologically nontrivial. We develop an approach that tracks the evolution of this topological state through time. Under several mild assumptions, we prove that the topology of the scene and its evolution can be recovered from point clouds representing the scene. Our further contribution is a method to learn predictive models that take a sequence of past point cloud observations as input and predict a sequence of topological states, conditioned on target/future control actions. Our experiments with highly deformable objects in simulation show that the proposed multistep predictive models yield more precise results than those obtained from computational topology libraries. These models can leverage patterns inferred across various objects and offer fast multistep predictions suitable for real-time applications.