论文标题
具有扩散边界条件的动力学传输方程阻尼
Damping of kinetic transport equation with diffuse boundary condition
论文作者
论文摘要
我们证明,当域是$ \ mathbb {r}^3 $的任何一般严格凸起的子集时,纯传输方程衰减的波动的指数力矩几乎与$ t^{ - 3} $一样快。我们通过建立一个新颖的$ l^1 $ - $ l^\ infty $ framework通过随机循环来证明定理。
We prove that exponential moments of a fluctuation of the pure transport equation decay pointwisely almost as fast as $t^{-3}$ when the domain is any general strictly convex subset of $\mathbb{R}^3$ with the smooth boundary of the diffuse boundary condition. We prove the theorem by establishing a novel $L^1$-$L^\infty$ framework via stochastic cycles.