论文标题

热力学结合网络的计算属性:整数编程方法

Computing properties of thermodynamic binding networks: An integer programming approach

论文作者

Haley, David, Doty, David

论文摘要

热力学结合网络(TBN)模型是研究工程分子系统的工具。 TBN模型允许通过简化的抽象来推理其行为,该抽象忽略了分子组成的细节,重点是任何化学底物共有的系统能量学的两个关键决定因素:形成了多少分子键,以及系统中存在多少个分离的复合物。我们作为整数程序制定了NP硬化的问题,即计算TBN的稳定(又称最小能量)配置:那些使债券和复合物数量最大化的配置。我们提供开源软件解决此整数程序。我们提供了经验证据,表明该方法比基于SAT求解器的以前的方法可以实现TBN稳定配置的速度更快的计算。此外,与基于SAT的方法不同,我们的整数编程公式可以理解某些分子具有无限计数的TBN。这些改进反过来又使我们能够有效地自动化对实用TBN所需属性的验证。最后,我们证明TBN具有自然的代表,并具有独特的希尔伯特基础,描述了其中局部最小能量构型的“基本组件”。这种表征有助于验证稳定配置的正确性,而且还有助于验证TBN中的整个“动力学途径”。

The thermodynamic binding networks (TBN) model is a tool for studying engineered molecular systems. The TBN model allows one to reason about their behavior through a simplified abstraction that ignores details about molecular composition, focusing on two key determinants of a system's energetics common to any chemical substrate: how many molecular bonds are formed, and how many separate complexes exist in the system. We formulate as an integer program the NP-hard problem of computing stable (a.k.a., minimum energy) configurations of a TBN: those configurations that maximize the number of bonds and complexes. We provide open-source software solving this integer program. We give empirical evidence that this approach enables dramatically faster computation of TBN stable configurations than previous approaches based on SAT solvers. Furthermore, unlike SAT-based approaches, our integer programming formulation can reason about TBNs in which some molecules have unbounded counts. These improvements in turn allow us to efficiently automate verification of desired properties of practical TBNs. Finally, we show that the TBN has a natural representation with a unique Hilbert basis describing the "fundamental components" out of which locally minimal energy configurations are composed. This characterization helps verify correctness of not only stable configurations, but entire "kinetic pathways" in a TBN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源