论文标题
M量化回归的比例估计和数据驱动的调谐常数选择
Scale estimation and data-driven tuning constant selection for M-quantile regression
论文作者
论文摘要
M-量化回归是一种普通的分位数回归形式,通常利用Huber影响功能和相应的调谐常数。估计需要一个令人讨厌的量表参数,以确保M量式估计值是规模不变的,并且先前提出了几个尺度估计器。在本文中,我们评估了这些规模估计器并评估其适用性,并根据时刻方法提出了新的量表估计器。此外,我们提出了两种用于估计数据驱动调谐的方法,以进行M量化回归。通过i)最大程度地减少回归参数的估计渐近方差,而ii)利用逆M量式函数来减少观测值的效果,从而获得了调谐常数。我们研究了数据驱动的调谐常数是否与通常的固定常数相反,例如在C = 1.345时,是否可以提高M量式回归参数的估计值的效率。使用基于模型的模拟,在不同的情况下研究了数据驱动的调谐常数的性能。最后,我们使用欧盟的收入和生活条件数据集说明了提出的方法。
M-quantile regression is a general form of quantile-like regression which usually utilises the Huber influence function and corresponding tuning constant. Estimation requires a nuisance scale parameter to ensure the M-quantile estimates are scale invariant, with several scale estimators having previously been proposed. In this paper we assess these scale estimators and evaluate their suitability, as well as proposing a new scale estimator based on the method of moments. Further, we present two approaches for estimating data-driven tuning constant selection for M-quantile regression. The tuning constants are obtained by i) minimising the estimated asymptotic variance of the regression parameters and ii) utilising an inverse M-quantile function to reduce the effect of outlying observations. We investigate whether data-driven tuning constants, as opposed to the usual fixed constant, for instance, at c=1.345, can improve the efficiency of the estimators of M-quantile regression parameters. The performance of the data-driven tuning constant is investigated in different scenarios using model-based simulations. Finally, we illustrate the proposed methods using a European Union Statistics on Income and Living Conditions data set.