论文标题
用粗粒测量的最佳量子温度计
Optimal Quantum Thermometry with Coarse-grained Measurements
论文作者
论文摘要
量子系统的精确温度计对于开发新技术很重要,并且了解精确的最终限制提出了一个基本挑战。众所周知,最佳的热量计需要对样品的总能量进行投影测量。但是,这在甚至适度的系统中都是不可行的,在中等大小的系统中,现实的能量测量必然涉及一些粗晶片。在这里,我们探讨了仅可用粗粒度测量值时温度估计的精度限制。利用信号处理中的工具,我们得出了最佳粗粒测量的结构,并发现即使有少量结果也可以达到良好的温度估计。我们将结果应用于多体系统和非平衡系统。对于前者而言,我们专注于在临界点上和远离关键性的旋转晶格,并发现在粗粒度后,具有系统尺寸的Fisher信息缩放量不变。对于后者,我们考虑了给定维度与样品相互作用的探针,然后进行探针的测量。我们为这种基于探针的温度测定法提供了一个任意,非平衡策略的上限,并使用原子量子点探针在Bose-Einstein冷凝物上进行了体现。
Precise thermometry for quantum systems is important to the development of new technology, and understanding the ultimate limits to precision presents a fundamental challenge. It is well known that optimal thermometry requires projective measurements of the total energy of the sample. However, this is infeasible in even moderately-sized systems, where realistic energy measurements will necessarily involve some coarse graining. Here, we explore the precision limits for temperature estimation when only coarse-grained measurements are available. Utilizing tools from signal processing, we derive the structure of optimal coarse-grained measurements and find that good temperature estimates can generally be attained even with a small number of outcomes. We apply our results to many-body systems and nonequilibrium thermometry. For the former, we focus on interacting spin lattices, both at and away from criticality, and find that the Fisher-information scaling with system size is unchanged after coarse-graining. For the latter, we consider a probe of given dimension interacting with the sample, followed by a measurement of the probe. We derive an upper bound on arbitrary, nonequilibrium strategies for such probe-based thermometry and illustrate it for thermometry on a Bose-Einstein condensate using an atomic quantum-dot probe.