论文标题
使用交叉谐振效果的数字分析量子模拟
Digital-Analog Quantum Simulations Using The Cross-Resonance Effect
论文作者
论文摘要
数字分析量子计算旨在通过用系统基础汉密尔顿(Hamiltonian)产生的单一转换来替换近期量子信息处理所需的当前不可行的资源需求。受此范式的启发,我们考虑了超导架构,并将互惠效应扩展到扰动理论的第一阶,从两倍的相互作用到作用于1D链和2D方形晶格的模拟Hamiltonian,在适当的参考框架中,在适当的参考框架中,纯粹是两局的Hamiltonian。通过用单量门大门来增强模拟汉密尔顿动力学,我们展示了人们如何产生更多不同的模拟汉密尔顿人。然后,我们合成统一序列,其中我们根据需要在各种模拟哈密顿量之间切换,从而模拟Ising,$ XY $和Heisenberg Spin模型的动力学。我们的动态模拟是ISING的无术和XY $型号的无误。我们还表明,对于数字分解而言,2d $ xy $和1D海森堡链的猪棍错误降低了。为了实现这些重要的近期加速,我们讨论了准确表征和校准我们的模拟汉密尔顿人以用于量子模拟所需的实际注意事项。最后,我们讨论了如何扩展汉密尔顿切换技术以得出新的模拟汉密尔顿人,这些模拟汉密尔顿人可能用于更复杂的数字 - 分析量子仿真,用于各种相互作用的旋转模型。
Digital-analog quantum computation aims to reduce the currently infeasible resource requirements needed for near-term quantum information processing by replacing sequences of one- and two-qubit gates with a unitary transformation generated by the systems' underlying Hamiltonian. Inspired by this paradigm, we consider superconducting architectures and extend the cross-resonance effect, up to first order in perturbation theory, from a two-qubit interaction to an analog Hamiltonian acting on 1D chains and 2D square lattices which, in an appropriate reference frame, results in a purely two-local Hamiltonian. By augmenting the analog Hamiltonian dynamics with single-qubit gates we show how one may generate a larger variety of distinct analog Hamiltonians. We then synthesize unitary sequences, in which we toggle between the various analog Hamiltonians as needed, simulating the dynamics of Ising, $XY$, and Heisenberg spin models. Our dynamics simulations are Trotter error-free for the Ising and $XY$ models in 1D. We also show that the Trotter errors for 2D $XY$ and 1D Heisenberg chains are reduced, with respect to a digital decomposition, by a constant factor. In order to realize these important near-term speedups, we discuss the practical considerations needed to accurately characterize and calibrate our analog Hamiltonians for use in quantum simulations. We conclude with a discussion of how the Hamiltonian toggling techniques could be extended to derive new analog Hamiltonians which may be of use in more complex digital-analog quantum simulations for various models of interacting spins.