论文标题
在定期踢出的三波段系统中,低能分散和动态定位的浮点工程
Floquet engineering of low-energy dispersions and dynamical localization in a periodically kicked three-band system
论文作者
论文摘要
关于伪造的浮动动力学 - $ 1/2 $系统,即石墨烯,我们在这里介绍了定期踢{三波段费米子系统,例如$α$ -t $ -t $ _3 $ lattice。在骰子晶格($α= 1 $)的情况下,通过连续调整参数$α$ $α$的参数$α$($α= 1 $),我们可以透露,从原则上讲,通过调音,通过在Brillouin区域中的某些特定点上的特定点踢踢球踢,我们可以透露,该特殊模型通过连续调整了石墨烯和骰子晶格之间的插值。我们的分析分析表明,根据踢踢参数的特定值,可以体验不同的胶质分散体,例如狄拉克类型,半迪拉克类型,无间隙线,绝对平坦的固定型带。此外,我们在数值上研究了骰子晶格中波数据包的动力学。胶质分散剂使我们能够在频闪时期了解波包的瞬时结构。我们发现一种情况,绝对平坦的准认证带导致了波数据包的完整动力学定位。 {在广泛地,我们以$α$ -t $ _3 $ lattice的数值计算式谱。沿垂直(平面)方向的周期性踢球会破裂(保留)粒子孔对称性,价格为$ 0 <α<1 $。此外,还揭示了在任何中间$α\ ne 0,\,1 $。}的动态定位不会发生。
Much having learned about Floquet dynamics of pseudospin-$1/2$ system namely, graphene, we here address the stroboscopic properties of a periodically kicked {three-band fermionic system such as $α$-T$_3$ lattice. This particular model provides an interpolation between graphene and dice lattice via the continuous tuning of the parameter $α$ from 0 to 1.} In the case of dice lattice ($α=1$), we reveal that one can, in principle, engineer various types of low energy dispersions around some specific points in the Brillouin zone by tuning the kicking parameter in the Hamiltonian along a particular direction. Our analytical analysis shows that one can experience different quasienergy dispersions for example, Dirac type, semi-Dirac type, gapless line, absolute flat quasienergy bands, depending on the specific values of the kicking parameter. Moreover, we numerically study the dynamics of a wave packet in dice lattice. The quasienergy dispersion allows us to understand the instantaneous structure of wave packet at stroboscopic times. We find a situation where absolute flat quasienergy bands lead to a complete dynamical localization of the wave packet. {Aditionally, we calculate the quasienergy spectrum numerically for $α$-T$_3$ lattice. A periodic kick in a perpendicular (planar) direction breaks (preserves) the particle-hole symmetry for $0<α<1$. Furthermore, it is also revealed that the dynamical localization of wave packet does not occur at any intermediate $α\ne 0,\,1$.}