论文标题

在深度学习时代挑战逻辑锁定方案的安全性:一种神经进化方法

Challenging the Security of Logic Locking Schemes in the Era of Deep Learning: A Neuroevolutionary Approach

论文作者

Sisejkovic, Dominik, Merchant, Farhad, Reimann, Lennart M., Srivastava, Harshit, Hallawa, Ahmed, Leupers, Rainer

论文摘要

逻辑锁定是一种在整个集成电路设计和制造流中保护硬件设计完整性的重要技术。但是,近年来,引入各种Deobfuscation攻击,锁定计划的安全性受到了彻底的挑战。与大多数研究分支一样,也在逻辑锁定领域中引入了深度学习。因此,在本文中,我们提出快照:对逻辑锁定的新颖攻击,它是第一个利用人工神经网络直接从锁定的合成栅极级网表中直接预测关键位值的情况下,而无需使用金色参考。在此,与现有工作相比,攻击使用了更简单,更灵活的学习模型。评估了两种不同的方法。第一种方法是基于简单的完全连接的神经网络。第二种方法利用遗传算法来进化更复杂的卷积神经网络体系结构,专门用于给定任务。攻击流提供了使用机器学习技术攻击锁定方案的通用且可自定义的框架。我们对两种现实攻击场景的快照进行了广泛的评估,其中包括参考基准电路以及硅验证的RISC-V核模块。评估结果表明,Snapshot在选定的攻击情况下达到了82.60%的平均关键预测准确性,与最新情况相比,绩效的显着提高了10.49个百分点。此外,Snapshot在所有评估的基准测试基准上的现有技术优于现有技术。结果表明,公共逻辑锁定方案的安全基础是基于可疑的假设。评估的结论提供了对设计未来逻辑锁定方案的挑战的见解,这些方案对机器学习攻击具有弹性。

Logic locking is a prominent technique to protect the integrity of hardware designs throughout the integrated circuit design and fabrication flow. However, in recent years, the security of locking schemes has been thoroughly challenged by the introduction of various deobfuscation attacks. As in most research branches, deep learning is being introduced in the domain of logic locking as well. Therefore, in this paper we present SnapShot: a novel attack on logic locking that is the first of its kind to utilize artificial neural networks to directly predict a key bit value from a locked synthesized gate-level netlist without using a golden reference. Hereby, the attack uses a simpler yet more flexible learning model compared to existing work. Two different approaches are evaluated. The first approach is based on a simple feedforward fully connected neural network. The second approach utilizes genetic algorithms to evolve more complex convolutional neural network architectures specialized for the given task. The attack flow offers a generic and customizable framework for attacking locking schemes using machine learning techniques. We perform an extensive evaluation of SnapShot for two realistic attack scenarios, comprising both reference benchmark circuits as well as silicon-proven RISC-V core modules. The evaluation results show that SnapShot achieves an average key prediction accuracy of 82.60% for the selected attack scenario, with a significant performance increase of 10.49 percentage points compared to the state of the art. Moreover, SnapShot outperforms the existing technique on all evaluated benchmarks. The results indicate that the security foundation of common logic locking schemes is build on questionable assumptions. The conclusions of the evaluation offer insights into the challenges of designing future logic locking schemes that are resilient to machine learning attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源