论文标题
D级GKLS主方程的放松时间的普遍限制
Universal Constraints on Relaxation Times for d-level GKLS master equations
论文作者
论文摘要
1976年,Gorini,Kossakowski,Sudarshan和Lindblad独立地发现了开放量子马尔可夫动力学的总体方程式。为了纪念所有作者,如今该方程式被称为GKLS主方程。在本文中,我们显示了对任何D级GKLS主方程有效的放松时间的普遍限制,这是对2级系统的众所周知约束的概括。具体而言,我们表明,任何放松率,反相反的时间,都不是所有松弛率总和的一半。由于在实验中可以测量放松时间,因此我们的约束为GKLS主方程的有效性提供了直接的实验测试,因此对于完全阳性和马尔可维亚性的条件。
In 1976, Gorini, Kossakowski, Sudarshan and Lindblad independently discovered a general form of master equations for an open quantum Markovian dynamics. In honor of all the authors, the equation is nowadays called the GKLS master equation. In this paper, we show universal constraints on the relaxation times valid for any d-level GKLS master equations, which is a generalization of the well-known constraints for 2-level systems. Specifically, we show that any relaxation rate, the inverse-relaxation time, is not greater than half of the sum of all relaxation rates. Since the relaxation times are measurable in experiments, our constraints provide a direct experimental test for the validity of the GKLS master equations, and hence for the conditions of the complete positivity and Markovianity.