论文标题
通过Cuntz-Krieger代数的镜头进行移动等价
Shift equivalences through the lens of Cuntz-Krieger algebras
论文作者
论文摘要
由威廉姆斯(Williams)衡量移动等价(SE)和强偏移等效性(SSE)之间的新差异的问题的动机,我们引入了三种对等关系,这些关系提供了阻碍SSE的新方法,同时仅假设SE。 我们的转移等效关系是由研究图c* - 代数出现的,那里的各种中间等效关系自然出现。结果,我们实现了Muhly,Pask和Tomforde所追求的目标,它在SSE和SE之间在邻接矩阵的C* - 相应方面的pimsner膨胀方面进行了微妙的差异,并使用此区别来反驳先前论文的证明。
Motivated by Williams' problem of measuring novel differences between shift equivalence (SE) and strong shift equivalence (SSE), we introduce three equivalence relations that provide new ways to obstruct SSE while merely assuming SE. Our shift equivalence relations arise from studying graph C*-algebras, where a variety of intermediary equivalence relations naturally arise. As a consequence we realize a goal sought after by Muhly, Pask and Tomforde, measure a delicate difference between SSE and SE in terms of Pimsner dilations for C*-correspondences of adjacency matrices, and use this distinction to refute a proof from a previous paper.