论文标题

使用神经网络减少模型订单:应用于层流和湍流

Model order reduction with neural networks: Application to laminar and turbulent flows

论文作者

Fukami, Kai, Hasegawa, Kazuto, Nakamura, Taichi, Morimoto, Masaki, Fukagata, Koji

论文摘要

我们研究了基于神经网络的模型降低的能力,即自动编码器(AE)用于流体流量。作为示例模型,本研究中考虑了由卷积神经网络和多层感知器组成的AE。 AE模型通过四个规范流体流进行评估,即:(1)二维圆柱唤醒,(2)其瞬态过程,((3)NOAA海面温度,以及(4)$ Y-Z $湍流通道流的截面场,在许多潜在模式下,非线性激活的选择,以及一个数量的数量模型。我们发现,根据目标流量,AE模型对上述参数的选择很敏感。最后,我们预见了基于机器学习的订单减少的扩展应用和观点,用于流体动力学社区的数值和实验研究。

We investigate the capability of neural network-based model order reduction, i.e., autoencoder (AE), for fluid flows. As an example model, an AE which comprises of a convolutional neural network and multi-layer perceptrons is considered in this study. The AE model is assessed with four canonical fluid flows, namely: (1) two-dimensional cylinder wake, (2) its transient process, (3) NOAA sea surface temperature, and (4) $y-z$ sectional field of turbulent channel flow, in terms of a number of latent modes, a choice of nonlinear activation functions, and a number of weights contained in the AE model. We find that the AE models are sensitive against the choice of the aforementioned parameters depending on the target flows. Finally, we foresee the extensional applications and perspectives of machine learning based order reduction for numerical and experimental studies in fluid dynamics community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源