论文标题

一项关于基于深度学习点的调查(POI)建议

A Survey on Deep Learning Based Point-Of-Interest (POI) Recommendations

论文作者

Islam, Md. Ashraful, Mohammad, Mir Mahathir, Das, Sarkar Snigdha Sarathi, Ali, Mohammed Eunus

论文摘要

基于位置的社交网络(LBSNS)使用户可以通过共享其签到,观点,照片和评论来与朋友和熟人进行社交。 LBSNS产生的大量数据开辟了一条新的研究途径,该研究诞生了推荐系统的新子场,称为利益点(POI)推荐。 POI推荐技术本质上利用了用户的历史检查和其他多模式信息,例如POI属性和友谊网络,以推荐适合用户的下一套POI。众多早期作品通过使用数据集中的手工制作功能,重点关注传统的机器学习技术。随着深度学习研究的最近激增,我们目睹了利用不同深度学习范式的各种POI建议作品。这些技术在问题配方,提出的技术,使用的数据集和功能等方面有很大不同。据我们所知,这项工作是对所有基于深度学习的POI推荐工作的首次全面调查。我们的工作对基于不同深度学习范式和其他相关功能的最新POI建议作品进行了分类和批判性分析。这篇评论可以被视为POI推荐领域的研究人员或从业人员的食谱。

Location-based Social Networks (LBSNs) enable users to socialize with friends and acquaintances by sharing their check-ins, opinions, photos, and reviews. Huge volume of data generated from LBSNs opens up a new avenue of research that gives birth to a new sub-field of recommendation systems, known as Point-of-Interest (POI) recommendation. A POI recommendation technique essentially exploits users' historical check-ins and other multi-modal information such as POI attributes and friendship network, to recommend the next set of POIs suitable for a user. A plethora of earlier works focused on traditional machine learning techniques by using hand-crafted features from the dataset. With the recent surge of deep learning research, we have witnessed a large variety of POI recommendation works utilizing different deep learning paradigms. These techniques largely vary in problem formulations, proposed techniques, used datasets, and features, etc. To the best of our knowledge, this work is the first comprehensive survey of all major deep learning-based POI recommendation works. Our work categorizes and critically analyzes the recent POI recommendation works based on different deep learning paradigms and other relevant features. This review can be considered a cookbook for researchers or practitioners working in the area of POI recommendation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源