论文标题

迈向下一代粒子降水模型:通过机器学习的中尺度预测(案例研究和进度框架)

Toward a Next Generation Particle Precipitation Model: Mesoscale Prediction Through Machine Learning (a Case Study and Framework for Progress)

论文作者

McGranaghan, Ryan M., Ziegler, Jack, Bloch, Téo, Hatch, Spencer, Camporeale, Enrico, Lynch, Kristina, Owens, Mathew, Gjerloev, Jesper, Zhang, Binzheng, Skone, Susan

论文摘要

我们通过新的数据库和使用机器学习(ML)工具从磁层到电离层的建模能力从磁层到电离层,以从这些数据中获取效用。我们已经编译,策划,分析,并提供了一个颗粒降水数据的新型且功能更强大的数据库,其中包括51颗卫星国防气象卫星计划(DMSP)观测值,该观察结果与太阳风和地磁活动数据在时间对齐。新的总电子通量通量粒子沉淀模型是一种称为脱发网的神经网络,它利用了ML方法提供的提高表达能力,以适当利用来自太阳风和地磁活动的各种信息,而且重要的是,他们的时间历史。通过对组织参数和目标电子能量通量观察的更强大的表示,脱根网使误差降低了> 50%的误差,这是由于当前最新模型的椭圆形变化,评估,跟踪,强度和在线启示(OFFICATION PRIME)(OFFICATION PRIME)的误差,可以更好地捕捉到Auroral flux的动态变化,并可以使其可重新恢复和重新恢复。我们为太空天气模型评估创建并应用了一个新的框架,最终导致整个太阳能研究界的先前指导。研究方法和结果代表了传统和数据科学驱动的发现交集,代表太空天气研究的“新边界”,为将来的努力奠定了基础。

We advance the modeling capability of electron particle precipitation from the magnetosphere to the ionosphere through a new database and use of machine learning (ML) tools to gain utility from those data. We have compiled, curated, analyzed, and made available a new and more capable database of particle precipitation data that includes 51 satellite years of Defense Meteorological Satellite Program (DMSP) observations temporally aligned with solar wind and geomagnetic activity data. The new total electron energy flux particle precipitation nowcast model, a neural network called PrecipNet, takes advantage of increased expressive power afforded by ML approaches to appropriately utilize diverse information from the solar wind and geomagnetic activity and, importantly, their time histories. With a more capable representation of the organizing parameters and the target electron energy flux observations, PrecipNet achieves a >50% reduction in errors from a current state-of-the-art model oval variation, assessment, tracking, intensity, and online nowcasting (OVATION Prime), better captures the dynamic changes of the auroral flux, and provides evidence that it can capably reconstruct mesoscale phenomena. We create and apply a new framework for space weather model evaluation that culminates previous guidance from across the solar-terrestrial research community. The research approach and results are representative of the "new frontier" of space weather research at the intersection of traditional and data science-driven discovery and provides a foundation for future efforts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源