论文标题

双重矛盾的生成自动编码器

Dual Contradistinctive Generative Autoencoder

论文作者

Parmar, Gaurav, Li, Dacheng, Lee, Kwonjoon, Tu, Zhuowen

论文摘要

我们提出了一种具有双重矛盾损失的新生成自动编码器模型,以改善执行同时推理(重建)和合成(采样)的生成自动编码器。我们的模型被称为双重矛盾的生成自动编码器(DC-VAE),它集成了实例级别的判别损失(维持重建/合成的实例级别的保真度),并与设定级别的对抗性损失(鼓励其构造/合成的设定级别的富裕性),两者都具有相互矛盾的范围。据报道,DC-VAE在不同的分辨率上进行了广泛的实验结果,包括32x32、64x64、128x128和512x512。在DC-VAE中,VAE中的两种矛盾损失与基线VAE的质量和定量性能提高,没有建筑变化,从而在DC-VAE中和谐起作用。观察到图像重建,图像合成,图像插值和表示学习的生成自动编码器之间的最新或竞争结果。 DC-VAE是一种通用VAE模型,适用于计算机视觉和机器学习中各种下游任务。

We present a new generative autoencoder model with dual contradistinctive losses to improve generative autoencoder that performs simultaneous inference (reconstruction) and synthesis (sampling). Our model, named dual contradistinctive generative autoencoder (DC-VAE), integrates an instance-level discriminative loss (maintaining the instance-level fidelity for the reconstruction/synthesis) with a set-level adversarial loss (encouraging the set-level fidelity for there construction/synthesis), both being contradistinctive. Extensive experimental results by DC-VAE across different resolutions including 32x32, 64x64, 128x128, and 512x512 are reported. The two contradistinctive losses in VAE work harmoniously in DC-VAE leading to a significant qualitative and quantitative performance enhancement over the baseline VAEs without architectural changes. State-of-the-art or competitive results among generative autoencoders for image reconstruction, image synthesis, image interpolation, and representation learning are observed. DC-VAE is a general-purpose VAE model, applicable to a wide variety of downstream tasks in computer vision and machine learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源