论文标题
$ l^4 $的最大估计值
An $L^4$ maximal estimate for quadratic Weyl sums
论文作者
论文摘要
我们表明$$ \ bigg \ | \ sup_ {0 <t <1} \ big | \ sum_ {n = 1}^{n} e^{2πi(n(\ cdot) + n^2 t)} \ big | \ bigg \ | _ {l^{4}([0,1])} \ leqc_εn^{3/4 +ε} $$,并讨论了一些应用程序的某些应用程序。对于二次Weyl和$ n^ε$的损失而言,此估计值是尖锐的。
We show that $$\bigg\|\sup_{0 < t < 1} \big|\sum_{n=1}^{N} e^{2πi (n(\cdot) + n^2 t)}\big| \bigg\|_{L^{4}([0,1])} \leq C_ε N^{3/4 + ε}$$ and discuss some applications to the theory of large values of Weyl sums. This estimate is sharp for quadratic Weyl sums, up to the loss of $N^ε$.