论文标题

数字双胞胎的连续校准:粒子过滤器和贝叶斯校准方法的比较

Continuous calibration of a digital twin: comparison of particle filter and Bayesian calibration approaches

论文作者

Ward, Rebecca, Choudhary, Ruchi, Gregory, Alastair, Jans-Singh, Melanie, Girolami, Mark

论文摘要

连续流的监视数据的同化是数字双胞胎的重要组成部分。同化数据用于确保数字双胞胎是受监视系统的真实表示。实现这一目标的一种方法是校准模拟模型,无论是基于数据衍生还是基于物理的,或两者的组合。在这种情况下,不可能进行传统的手动校准,因此需要进行连续校准的新方法。在本文中,提出了用于连续校准数字双胞胎的物理模型元素的粒子过滤器方法,并将其应用于地下农场的示例。该方法将其应用于具有已知校准参数值的合成问题,然后再与受监视的数据一起使用。将所提出的方法与静态和顺序的贝叶斯校准方法进行了比较,并在确定参数值的分布和分析时(分析时间)(两个基本要求)方面进行了比较。该方法被证明可能是确保持续模型保真度的手段有用的。

Assimilation of continuously streamed monitored data is an essential component of a digital twin; the assimilated data are used to ensure the digital twin is a true representation of the monitored system. One way this is achieved is by calibration of simulation models, whether data-derived or physics-based, or a combination of both. Traditional manual calibration is not possible in this context hence new methods are required for continuous calibration. In this paper, a particle filter methodology for continuous calibration of the physics-based model element of a digital twin is presented and applied to an example of an underground farm. The methodology is applied to a synthetic problem with known calibration parameter values prior to being used in conjunction with monitored data. The proposed methodology is compared against static and sequential Bayesian calibration approaches and compares favourably in terms of determination of the distribution of parameter values and analysis run-times, both essential requirements. The methodology is shown to be potentially useful as a means to ensure continuing model fidelity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源