论文标题

紧凑的表示语义传感器数据有效存储的表示

Compact Representations for Efficient Storage of Semantic Sensor Data

论文作者

Karim, Farah, Vidal, Maria-Esther, Auer, Sören

论文摘要

如今,多种传感器和设备生成的传感器数据数量迅速增加。数据语义促进了几种传感器和设备之间的信息交换,适应性和互操作性。传感器数据及其含义可以使用本体论,例如语义传感器网络(SSN)本体。尽管如此,语义上的语义传感器数据的大小比原始传感器数据大得多。此外,传感器可以观察到一些测量值,并且可以产生大量有关传感器数据的重复事实。我们提出了语义传感器数据的紧凑或分解的表示,其中仅描述了一次重复测量值。此外,这些紧凑的表示能够增强语义传感器数据的存储和处理。为了扩展到大型数据集,利用基于分数的基于分解的表格表示,以使用大数据技术来存储和管理分解的语义传感器数据。我们从经验上研究语义传感器提出的紧凑表示及其对查询处理的影响的有效性。此外,我们评估了存储提出的表示对不同RDF实施的影响。结果表明,所提出的紧凑型表示可以使传感器数据的存储和查询处理通过不同的RDF实现,最多两个数量级可以减少查询执行时间。

Nowadays, there is a rapid increase in the number of sensor data generated by a wide variety of sensors and devices. Data semantics facilitate information exchange, adaptability, and interoperability among several sensors and devices. Sensor data and their meaning can be described using ontologies, e.g., the Semantic Sensor Network (SSN) Ontology. Notwithstanding, semantically enriched, the size of semantic sensor data is substantially larger than raw sensor data. Moreover, some measurement values can be observed by sensors several times, and a huge number of repeated facts about sensor data can be produced. We propose a compact or factorized representation of semantic sensor data, where repeated measurement values are described only once. Furthermore, these compact representations are able to enhance the storage and processing of semantic sensor data. To scale up to large datasets, factorization based, tabular representations are exploited to store and manage factorized semantic sensor data using Big Data technologies. We empirically study the effectiveness of a semantic sensor's proposed compact representations and their impact on query processing. Additionally, we evaluate the effects of storing the proposed representations on diverse RDF implementations. Results suggest that the proposed compact representations empower the storage and query processing of sensor data over diverse RDF implementations, and up to two orders of magnitude can reduce query execution time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源