论文标题

量子多内核学习

Quantum Multiple Kernel Learning

论文作者

Vedaie, Seyed Shakib, Noori, Moslem, Oberoi, Jaspreet S., Sanders, Barry C., Zahedinejad, Ehsan

论文摘要

内核方法在机器学习应用程序中起着重要作用,因为它们的概念简单性和在众多机器学习任务上的出色性能。机器学习模型的表现力是指模型近似复杂函数的能力,对其在这些任务中的性能产生了重大影响。增强内核机器的表达性的一种方法是结合多个单独的内核,以达到更具表现力的组合内核。这种方法称为多个内核学习(MKL)。在这项工作中,我们提出了一种我们称为量子MKL的MKL方法,该方法结合了多个量子内核。我们的方法利用一个量子位(DQC1)利用确定性量子计算的能力来估计一组经典棘手的个体量子内核的组合内核。合并的内核估计是在没有明确计算每个内核的情况下实现的,同时仍允许调整单个内核以获得更好的表现力。我们对两个二进制分类问题的模拟 - 一个在合成数据集上执行的,另一个在德国信用数据集上执行 - - 证明了量子MKL方法比单量子内核机的优越性。

Kernel methods play an important role in machine learning applications due to their conceptual simplicity and superior performance on numerous machine learning tasks. Expressivity of a machine learning model, referring to the ability of the model to approximate complex functions, has a significant influence on its performance in these tasks. One approach to enhancing the expressivity of kernel machines is to combine multiple individual kernels to arrive at a more expressive combined kernel. This approach is referred to as multiple kernel learning (MKL). In this work, we propose an MKL method we refer to as quantum MKL, which combines multiple quantum kernels. Our method leverages the power of deterministic quantum computing with one qubit (DQC1) to estimate the combined kernel for a set of classically intractable individual quantum kernels. The combined kernel estimation is achieved without explicitly computing each individual kernel, while still allowing for the tuning of individual kernels in order to achieve better expressivity. Our simulations on two binary classification problems---one performed on a synthetic dataset and the other on a German credit dataset---demonstrate the superiority of the quantum MKL method over single quantum kernel machines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源