论文标题

Riemann表面的封闭连续

Closed continuations of Riemann surfaces

论文作者

Masumoto, Makoto, Shiba, Masakazu

论文摘要

任何开放的Riemann Surface $ r_0 $ r_0 $ r_0 $ g $都可以固定地嵌入同一属的封闭riemann表面中,即,$ r_0 $被实现为$ g $属的封闭riemann表面的子域。我们关注此类封闭的Riemann表面的集合$ M(R_0)$。我们在TeichMüller空间设置中提出问题,以研究$ M(R_ {0})$的几何属性。除其他外,我们表明$ m(r_ {0})$是封闭的lipschitz域同构,只要$ r_0 $是无分析的有限的。

Any open Riemann surface $R_0$ of finite genus $g$ can be conformally embedded into a closed Riemann surface of the same genus, that is, $R_0$ is realized as a subdomain of a closed Riemann surface of genus $g$. We are concerned with the set $M(R_0)$ of such closed Riemann surfaces. We formulate the problem in the Teichmüller space setting to investigate geometric properties of $M(R_{0})$. We show, among other things, that $M(R_{0})$ is a closed Lipschitz domain homeomorphic to a closed ball provided that $R_0$ is nonanalytically finite.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源