论文标题

具有预测不确定性的深度多视图深度估计

Deep Multi-view Depth Estimation with Predicted Uncertainty

论文作者

Ke, Tong, Do, Tien, Vuong, Khiem, Sartipi, Kourosh, Roumeliotis, Stergios I.

论文摘要

在本文中,我们解决了使用深神经网络从一系列图像估算密集深度的问题。具体而言,我们采用密集的光流网络来计算对应关系,然后对点云进行三角测量,以获得初始深度图。但是,由于缺乏常见的观察值或小差异,点云的零件可能比其他云的精确度要不那么准确。为了进一步提高三角测量精度,我们引入了一个深度填充网络(DRN),该网络根据图像的上下文提示优化初始深度图。特别是,DRN包含一个迭代改进模块(IRM),该模块通过完善深度特征来提高迭代的深度精度。最后,DRN还预测了精制深度的不确定性,这在场景重建的测量选择等应用中是可取的。我们在实验上表明,我们的算法在深度准确性方面优于最先进的方法,并验证我们的预测不确定性与实际深度误差高度相关。

In this paper, we address the problem of estimating dense depth from a sequence of images using deep neural networks. Specifically, we employ a dense-optical-flow network to compute correspondences and then triangulate the point cloud to obtain an initial depth map.Parts of the point cloud, however, may be less accurate than others due to lack of common observations or small parallax. To further increase the triangulation accuracy, we introduce a depth-refinement network (DRN) that optimizes the initial depth map based on the image's contextual cues. In particular, the DRN contains an iterative refinement module (IRM) that improves the depth accuracy over iterations by refining the deep features. Lastly, the DRN also predicts the uncertainty in the refined depths, which is desirable in applications such as measurement selection for scene reconstruction. We show experimentally that our algorithm outperforms state-of-the-art approaches in terms of depth accuracy, and verify that our predicted uncertainty is highly correlated to the actual depth error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源