论文标题

使用深度学习模型与患者无关的癫痫发作预测

Patient-independent Epileptic Seizure Prediction using Deep Learning Models

论文作者

Dissanayake, Theekshana, Fernando, Tharindu, Denman, Simon, Sridharan, Sridha, Fookes, Clinton

论文摘要

目的:癫痫是人类中最普遍的神经系统疾病之一,可能导致严重的脑损伤,中风和脑肿瘤。癫痫发作的早期发现可以帮助减轻伤害,可用于帮助治疗癫痫患者。癫痫发作预测系统的目的是成功识别发生在癫痫发作事件之前的典型大脑阶段。独立于患者的癫痫发作预测模型旨在在数据集中的多个受试者中提供准确的性能,并被确定为癫痫发作预测问题的现实世界解决方案。但是,对于设计此类模型以适应脑电图数据中的高主体间可变性,几乎没有引起关注。方法:我们提出了两种与患者独立的深度学习结构,具有不同的学习策略,可以利用来自多个受试者的数据学习全球功能。结果:提出的模型在CHB-MIT-EEG数据集上实现了最新的癫痫发作预测性能,分别证明了88.81%和91.54%的精度。结论:对拟议的学习策略进行培训的暹罗模型能够在预测癫痫发作的同时学习与患者变化有关的模式。意义:我们的模型对与患者无关的癫痫发作预测显示出卓越的性能,并且在模型适应后,相同的结构可以用作患者特定的分类器。我们是第一个采用模型解释来了解癫痫发作预测任务的分类器行为的研究,我们还表明,我们的模型使用的MFCC特征图包含与间歇性和典型前脑状态相关的预测生物标志物。

Objective: Epilepsy is one of the most prevalent neurological diseases among humans and can lead to severe brain injuries, strokes, and brain tumors. Early detection of seizures can help to mitigate injuries, and can be used to aid the treatment of patients with epilepsy. The purpose of a seizure prediction system is to successfully identify the pre-ictal brain stage, which occurs before a seizure event. Patient-independent seizure prediction models are designed to offer accurate performance across multiple subjects within a dataset, and have been identified as a real-world solution to the seizure prediction problem. However, little attention has been given for designing such models to adapt to the high inter-subject variability in EEG data. Methods: We propose two patient-independent deep learning architectures with different learning strategies that can learn a global function utilizing data from multiple subjects. Results: Proposed models achieve state-of-the-art performance for seizure prediction on the CHB-MIT-EEG dataset, demonstrating 88.81% and 91.54% accuracy respectively. Conclusions: The Siamese model trained on the proposed learning strategy is able to learn patterns related to patient variations in data while predicting seizures. Significance: Our models show superior performance for patient-independent seizure prediction, and the same architecture can be used as a patient-specific classifier after model adaptation. We are the first study that employs model interpretation to understand classifier behavior for the task for seizure prediction, and we also show that the MFCC feature map utilized by our models contains predictive biomarkers related to interictal and pre-ictal brain states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源