论文标题

聚合物合成的计算框架,使用可超极化反应性分子动力学研究介电特性

Computational framework for polymer synthesis to study dielectric properties using polarizable reactive molecular dynamics

论文作者

Mishra, Ankit, Chen, Lihua, Li, ZongZe, Nomura, Ken-ichi, Krishnamoorthy, Aravind, Fukushima, Shogo, Tiwari, Subodh C., Kalia, Rajiv K., Nakano, Aiichiro, Ramprasad, Rampi, Sotzing, Greg, Cao, Yang, Shimojo, Fuyuki, Vashishta, Priya

论文摘要

现代电子设备所需的能量和功率密度增加为设计具有高能量密度的新介电聚合物材料带来了挑战,同时保持高施加电场的低损失。最近,一种加上层次建模的先进计算筛选方法加速了有希望的高能量密度材料的识别。众所周知,聚合物材料的介电响应在很大程度上受其相,局部异质结构以及操作温度的影响。这种输入对于加速潜在聚合物候选物的设计和发现至关重要。但是,仍然缺乏一个有效的计算框架,用于探测聚合物介电特性的温度依赖性,同时仍缺乏结合其形态控制效应的效果。在本文中,我们提出了一个基于反应性分子动力学的可扩展计算框架,具有Valence状态的可极化电荷模型,该模型能够处理实际相关的聚合物形态,并同时提供近量子的精度,以估算各种聚合物系统的介电性能。我们证明了我们最近通过合理的实验理论共同设计确定的高能密度聚合物系统的框架的预测能力。我们的可扩展和自动化框架可用于组合大型设计空间的高通量理论筛选,以识别下一代高能密度聚合物材料。

The increased energy and power density required in modern electronics poses a challenge for designing new dielectric polymer materials with high energy density while maintaining low loss at high applied electric fields. Recently, an advanced computational screening method coupled with hierarchical modelling has accelerated the identification of promising high energy density materials. It is well known that the dielectric response of polymeric materials is largely influenced by their phases and local heterogeneous structures as well as operational temperature. Such inputs are crucial to accelerate the design and discovery of potential polymer candidates. However, an efficient computational framework to probe temperature dependence of the dielectric properties of polymers, while incorporating effects controlled by their morphology is still lacking. In this paper, we propose a scalable computational framework based on reactive molecular dynamics with a valence-state aware polarizable charge model, which is capable of handling practically relevant polymer morphologies and simultaneously provide near-quantum accuracy in estimating dielectric properties of various polymer systems. We demonstrate the predictive power of our framework on high energy density polymer systems recently identified through rational experimental-theoretical co-design. Our scalable and automated framework may be used for high-throughput theoretical screenings of combinatorial large design space to identify next-generation high energy density polymer materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源