论文标题

来自蜂窝自动机的对抗性图丁模式

Adversarial Turing Patterns from Cellular Automata

论文作者

Tursynbek, Nurislam, Vilkoviskiy, Ilya, Sindeeva, Maria, Oseledets, Ivan

论文摘要

最先进的深层分类器非常容易受到普遍的对抗扰动的影响:小小的小扰动会导致大多数伪装的分类错误。这种现象可能会导致严重的安全问题。尽管在这一领域进行了广泛的研究,但对这些扰动的结构缺乏理论上的理解。在图像域中,模式之间存在一定的视觉相似性,代表了这些扰动和经典的图灵模式,这些模式作为非线性部分偏微分方程的解决方案,并且是自然界许多过程的基本概念。在本文中,我们通过绘制一种简化的算法来将通用扰动绘制到(不均匀)细胞自动机,后者是后者生成图灵模式,从而提供了这两种不同理论之间的理论桥梁。此外,我们建议使用由细胞自动机产生的图灵模式作为普遍的扰动,并在实验上表明它们会大大降低深度学习模型的性能。我们发现这种方法是在黑盒子方案中创建数据不合时宜的准确扰动的一种快速有效的方法。源代码可从https://github.com/nurislamt/advturing获得。

State-of-the-art deep classifiers are intriguingly vulnerable to universal adversarial perturbations: single disturbances of small magnitude that lead to misclassification of most in-puts. This phenomena may potentially result in a serious security problem. Despite the extensive research in this area,there is a lack of theoretical understanding of the structure of these perturbations. In image domain, there is a certain visual similarity between patterns, that represent these perturbations, and classical Turing patterns, which appear as a solution of non-linear partial differential equations and are underlying concept of many processes in nature. In this paper,we provide a theoretical bridge between these two different theories, by mapping a simplified algorithm for crafting universal perturbations to (inhomogeneous) cellular automata,the latter is known to generate Turing patterns. Furthermore,we propose to use Turing patterns, generated by cellular automata, as universal perturbations, and experimentally show that they significantly degrade the performance of deep learning models. We found this method to be a fast and efficient way to create a data-agnostic quasi-imperceptible perturbation in the black-box scenario. The source code is available at https://github.com/NurislamT/advTuring.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源