论文标题
通过电子健康记录数据预测短期和长期住院结果的知识蒸馏合奏框架
A Knowledge Distillation Ensemble Framework for Predicting Short and Long-term Hospitalisation Outcomes from Electronic Health Records Data
论文作者
论文摘要
对患者进行准确预后的能力对于积极主动的临床决策,知情的资源管理和个性化护理至关重要。现有的结果预测模型遭受了不频繁的积极结果的低回忆。我们提出了一个高度可观且可靠的机器学习框架,以自动预测由死亡率和ICU入院代表的逆境,该逆境来自时间序列的生命体征和实验室结果,在入院后的前24小时内获得。堆叠的平台包括两个组成部分:a)一个无监督的LSTM自动编码器,学习了时间序列的最佳代表,使用它来区分较不频繁的模式,这些模式以不利的方式与大多数不良模式结束的结论,以及b)逐步预测的典型启动,并符合构造的典范,并符合构造的范围,并符合构建的特征,并符合构造的特征,并构成了对构建的特征,并将其范围列出,以示构成的特征,以征询构造的特征,并将其置于典范的特征。摘要。该模型用于评估患者随着时间的流逝风险,并根据患者的静态特征和动态信号提供其预测的视觉依据。预测死亡率和ICU承认的三个案例研究的结果表明,该模型的表现优于所有现有结果预测模型,在预测ICU和总病房环境中的PR-AUC(95 $%$ CI:0.878-0.969)方面预测死亡率和0.908和0.908(95 $ $ CI:0.8770-0.9335)。
The ability to perform accurate prognosis of patients is crucial for proactive clinical decision making, informed resource management and personalised care. Existing outcome prediction models suffer from a low recall of infrequent positive outcomes. We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission from time-series vital signs and laboratory results obtained within the first 24 hours of hospital admission. The stacked platform comprises two components: a) an unsupervised LSTM Autoencoder that learns an optimal representation of the time-series, using it to differentiate the less frequent patterns which conclude with an adverse event from the majority patterns that do not, and b) a gradient boosting model, which relies on the constructed representation to refine prediction, incorporating static features of demographics, admission details and clinical summaries. The model is used to assess a patient's risk of adversity over time and provides visual justifications of its prediction based on the patient's static features and dynamic signals. Results of three case studies for predicting mortality and ICU admission show that the model outperforms all existing outcome prediction models, achieving PR-AUC of 0.891 (95$%$ CI: 0.878 - 0.969) in predicting mortality in ICU and general ward settings and 0.908 (95$%$ CI: 0.870-0.935) in predicting ICU admission.