论文标题

Deep Multi-Dive Contereo在带空气和散射系数估计的散射介质中的除尘成本量

Dehazing Cost Volume for Deep Multi-view Stereo in Scattering Media with Airlight and Scattering Coefficient Estimation

论文作者

Fujimura, Yuki, Sonogashira, Motoharu, Iiyama, Masaaki

论文摘要

我们提出了一种基于学习的多视图立体声(MVS)方法,用于散射介质(例如雾或烟),具有新颖的成本量,称为Dohazing Espem量。散射介质捕获的图像由于散射和悬浮颗粒引起的衰减而降低。这种退化取决于场景深度。因此,传统MVS方法很难评估光度一致性,因为在三维(3D)重建之前,深度是未知的。飞机成本量可以通过在成本量中使用扫平飞机计算散射效果来解决此鸡和蛋的深度估计问题。我们还提出了一种估计散射参数(例如气灯和散射系数)的方法,这是我们飞行成本量所需的。具有我们飞行成本量的网络的输出深度可以视为这些参数的函数。因此,它们通过在结构轻度步骤中获得的稀疏3D点云进行几何优化。合成的朦胧图像的实验结果表明,我们的飞机成本量与散射介质的普通成本量的有效性。我们还证明了我们飞行成本量的适用性,对真实的雾景场景。

We propose a learning-based multi-view stereo (MVS) method in scattering media, such as fog or smoke, with a novel cost volume, called the dehazing cost volume. Images captured in scattering media are degraded due to light scattering and attenuation caused by suspended particles. This degradation depends on scene depth; thus, it is difficult for traditional MVS methods to evaluate photometric consistency because the depth is unknown before three-dimensional (3D) reconstruction. The dehazing cost volume can solve this chicken-and-egg problem of depth estimation and image restoration by computing the scattering effect using swept planes in the cost volume. We also propose a method of estimating scattering parameters, such as airlight, and a scattering coefficient, which are required for our dehazing cost volume. The output depth of a network with our dehazing cost volume can be regarded as a function of these parameters; thus, they are geometrically optimized with a sparse 3D point cloud obtained at a structure-from-motion step. Experimental results on synthesized hazy images indicate the effectiveness of our dehazing cost volume against the ordinary cost volume regarding scattering media. We also demonstrated the applicability of our dehazing cost volume to real foggy scenes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源