论文标题

重排的平均振荡界限

Mean oscillation bounds on rearrangements

论文作者

Burchard, Almut, Dafni, Galia, Gibara, Ryan

论文摘要

我们使用几何参数来证明在$ \ mathbb {r}^n $上的两个重要重排的平均振荡上明确界限。为了减少可重排功能的重新安排$ f^*$,在立方体上的有界平均振荡(BMO),我们改善了bennett-devore-- devore-sharpley的经典不平等,$ \ | f^*\ | _ \ | _ {bmo( \ | f \ | _ {bmo(\ Mathbb {r}^n)} $,通过在dimension $ n $中显示$ c_n $的增长不是指数级,而是$ \ sqrt {n} $的大多数。这是通过将立方体与一个矩形家族进行比较来实现的,该矩形可以证明无尺寸的calderón-zygmund分解。通过将立方体与极地矩形家族进行比较,我们提供了第一个证明,表明类似的不等式适用于对称减少的重排($ sf $)。

We use geometric arguments to prove explicit bounds on the mean oscillation for two important rearrangements on $\mathbb{R}^n$. For the decreasing rearrangement $f^*$ of a rearrangeable function $f$ of bounded mean oscillation (BMO) on cubes, we improve a classical inequality of Bennett--DeVore--Sharpley, $\|f^*\|_{BMO(\mathbb{R}_+)}\leq C_n \|f\|_{BMO(\mathbb{R}^n)}$, by showing the growth of $C_n$ in the dimension $n$ is not exponential but at most of the order of $\sqrt{n}$. This is achieved by comparing cubes to a family of rectangles for which one can prove a dimension-free Calderón--Zygmund decomposition. By comparing cubes to a family of polar rectangles, we provide a first proof that an analogous inequality holds for the symmetric decreasing rearrangement, $Sf$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源