论文标题
开普勒1649系统中的偏心驱动气候效应
Eccentricity Driven Climate Effects in the Kepler-1649 System
论文作者
论文摘要
陆地系外行星的发现正在发现越来越多样化的建筑。特别令人感兴趣的是那些在各种星空星际分离处包含系外行星的系统,从而可以直接比较系外行星的进化(比较行星学)。开普勒1649系统包含两个与金星和地球相似的陆地行星,尽管它们的偏心率在很大程度上不受限制。在这里,我们介绍了系统动力学研究的结果以及对气候的潜在影响。开普勒-1649系统的偏心率受到限制,我们表明,在两个已知行星之间,在有限的怪异范围内,在两个已知行星之间有动态可行的区域。我们研究了外行星对行星动力学的偏心率的影响,并表明这会导致长期稳定构型以高频(1000-3000年)的偏心振荡。我们计算了这些偏心率变化对日溶剂通量的产生影响,并介绍了可居住区行星3D气候模拟的结果。我们的模拟表明,尽管偏心差异很大,但该行星可以保持稳定的气候,并且对于各种初始气候构型而言,在近半球上的温度变化相对较小。因此,这样的系统为探索替代性金星/地球气候演化方案提供了关键机会。
The discovery of terrestrial exoplanets is uncovering increasingly diverse architectures. Of particular interest are those systems that contain exoplanets at a variety of star-planet separations, allowing direct comparison of exoplanet evolution (comparative planetology). The Kepler-1649 system contains two terrestrial planets similar both in size and insolation flux to Venus and Earth, although their eccentricities remain largely unconstrained. Here we present results of dynamical studies of the system and the potential effects on climate. The eccentricities of the Kepler-1649 system are poorly constrained, and we show that there are dynamically viable regions for further terrestrial planets in between the two known planets for a limited range of eccentricities. We investigate the effect of eccentricity of the outer planet on the dynamics of both planets and show that this results in high-frequency (1000-3000 year) eccentricity oscillations in long-term stable configurations. We calculate the resulting effect of these eccentricity variations on insolation flux and present the results of 3D climate simulations for the habitable zone planet. Our simulations demonstrate that, despite large eccentricity variations, the planet can maintain stable climates with relatively small temperature variations on the substellar hemisphere for a variety of initial climate configurations. Such systems thus provide key opportunities to explore alternative Venus/Earth climate evolution scenarios.