论文标题
$ \ infty $ - 类别和脱求的商誉塔楼
Goodwillie Towers of $\infty$-Categories and Desuspension
论文作者
论文摘要
我们重新概念化了将$ n $ excisive近似值形成到$ \ infty $ - 类别的过程,从heuts的意义上讲,将悬架函数反转为$ a_n $ - crogroup对象。我们将$ n $ -Excisive $ \ infty $ - 类别描述为$ \ infty $ - 类别,其中$ a_n $ - crogroup对象承认脱求ususpensions。将此结果应用于尖端的空间,我们将klein-schwänzl-vogt定理:每个2连接的cogroup样$ a_ \ in_ \ infty $ - 空间都承认脱肩。
We reconceptualize the process of forming $n$-excisive approximations to $\infty$-categories, in the sense of Heuts, as inverting the suspension functor lifted to $A_n$-cogroup objects. We characterize $n$-excisive $\infty$-categories as those $\infty$-categories in which $A_n$-cogroup objects admit desuspensions. Applying this result to pointed spaces we reprove a theorem of Klein-Schwänzl-Vogt: every 2-connected cogroup-like $A_\infty$-space admits a desuspension.