论文标题

使用残留神经网络学习长期预测的学习Sentinel-2光谱动力学

Learning Sentinel-2 Spectral Dynamics for Long-Run Predictions Using Residual Neural Networks

论文作者

Estopinan, Joaquim, Tochon, Guillaume, Drumetz, Lucas

论文摘要

充分利用多光谱图像时间序列是一个有前途但相对较少的研究方向,因为共同分析空间,光谱和时间信息的复杂性。捕获和表征时间动态是重要且具有挑战性的问题之一。我们的新方法铺平了捕获真实数据动态的方式,并最终应受益于Unmixing或分类等应用程序。在经典上处理时间序列动态需要动态模型和观察模型的知识。前者可能不正确或很难处理,从而激发了旨在直接从数据学习动态的数据驱动策略。在本文中,我们适应神经网络体系结构,以了解模拟和真实的多光谱时间序列的定期动态。我们强调了选择正确的状态变量以捕获周期性动态的必要性,并表明我们的模型只能使用一年的培训数据来重现植被的平均季节性动态。

Making the most of multispectral image time-series is a promising but still relatively under-explored research direction because of the complexity of jointly analyzing spatial, spectral and temporal information. Capturing and characterizing temporal dynamics is one of the important and challenging issues. Our new method paves the way to capture real data dynamics and should eventually benefit applications like unmixing or classification. Dealing with time-series dynamics classically requires the knowledge of a dynamical model and an observation model. The former may be incorrect or computationally hard to handle, thus motivating data-driven strategies aiming at learning dynamics directly from data. In this paper, we adapt neural network architectures to learn periodic dynamics of both simulated and real multispectral time-series. We emphasize the necessity of choosing the right state variable to capture periodic dynamics and show that our models can reproduce the average seasonal dynamics of vegetation using only one year of training data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源