论文标题

开发有效且自动化的患者参与估计器的远程医疗:一种机器学习方法

Developing an Effective and Automated Patient Engagement Estimator for Telehealth: A Machine Learning Approach

论文作者

Guhan, Pooja, Awasthi, Naman, McDonald, and Kathryn, Bussell, Kristin, Manocha, Dinesh, Reeves, Gloria, Bera, Aniket

论文摘要

我们讨论了MET是一种基于学习的算法,该算法旨在感知患者在远程医疗期间的参与度。我们利用与心理学文献中经常使用的情感和认知特征相对应的潜在媒介来了解一个人在半监督的基于GAN的框架中的参与水平。我们从心理健康的角度,更具体地说明了如何利用这种方法的功效,以更好地理解远程健康健康期间的患者参与度。为了进一步开发对远程医疗有用的类似技术,我们还计划发布一个包含1299个视频剪辑的数据集Medica,每3秒钟长,并在其上显示实验。我们的框架报告了与最先进的方法相比,RMSE(根平方误差)提高了40%,以进行互动估算。在我们的现实测试中,我们还观察到心理治疗师报告的工作联盟库存评分之间的正相关。这表明该模型的潜力有可能与心理治疗师使用的参与措施保持一致的患者参与度估计。

We discuss MET, a learning-based algorithm proposed for perceiving a patient's level of engagement during telehealth sessions. We leverage latent vectors corresponding to Affective and Cognitive features frequently used in psychology literature to understand a person's level of engagement in a semi-supervised GAN-based framework. We showcase the efficacy of this method from the perspective of mental health and more specifically how this can be leveraged for a better understanding of patient engagement during telemental health sessions. To further the development of similar technologies that can be useful for telehealth, we also plan to release a dataset MEDICA containing 1299 video clips, each 3 seconds long and show experiments on the same. Our framework reports a 40% improvement in RMSE (Root Mean Squared Error) over state-of-the-art methods for engagement estimation. In our real-world tests, we also observed positive correlations between the working alliance inventory scores reported by psychotherapists. This indicates the potential of the proposed model to present patient engagement estimations that aligns well with the engagement measures used by psychotherapists.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源