论文标题
DS-UI:高斯混合模型的双重监督混合物,用于不确定性推断
DS-UI: Dual-Supervised Mixture of Gaussian Mixture Models for Uncertainty Inference
论文作者
论文摘要
本文提出了一种双重监督的不确定性推断(DS-UI)框架,用于改善基于深神经网络(DNN)基于基于的图像识别的基于贝叶斯估计的不确定性推理(UI)。在DS-UI中,我们将DNN的分类器(即最后的完全连接(FC)层)与高斯混合模型(MOGMM)的混合物结合在一起,以获得MOGMM-FC层。与现有的DNN的UI方法不同,DNN仅计算DNN输出分布的均值或模式,所提出的MOGMM-FC层充当了分类器输入的特征的概率解释器,以直接计算DS-UI的概率密度。此外,我们为MOGMM-FC层优化提出了一种双重监督的基于随机梯度的变分贝叶斯(DS-SGVB)算法。与其他UI方法中的常规SGVB和优化算法不同,DS-SGVB不仅模拟MOGMM中每个高斯混合模型(GMM)在特定类中的样品模型,还考虑了其他类别的负面样本,以减少GMM的其他类别,以降低Intra Intra Intra Intra Intra Intra Intra class的能力,以增强MOG的同时层次范围,以增强级别的层次。 DS-UI。实验结果表明,DS-UI在错误分类检测中的最先进UI方法的表现。我们进一步评估开放式域内/分布检测中的DS-UI,并发现统计学上的显着改进。特征空间的可视化证明了DS-UI的优势。
This paper proposes a dual-supervised uncertainty inference (DS-UI) framework for improving Bayesian estimation-based uncertainty inference (UI) in deep neural network (DNN)-based image recognition. In the DS-UI, we combine the classifier of a DNN, i.e., the last fully-connected (FC) layer, with a mixture of Gaussian mixture models (MoGMM) to obtain an MoGMM-FC layer. Unlike existing UI methods for DNNs, which only calculate the means or modes of the DNN outputs' distributions, the proposed MoGMM-FC layer acts as a probabilistic interpreter for the features that are inputs of the classifier to directly calculate the probability density of them for the DS-UI. In addition, we propose a dual-supervised stochastic gradient-based variational Bayes (DS-SGVB) algorithm for the MoGMM-FC layer optimization. Unlike conventional SGVB and optimization algorithms in other UI methods, the DS-SGVB not only models the samples in the specific class for each Gaussian mixture model (GMM) in the MoGMM, but also considers the negative samples from other classes for the GMM to reduce the intra-class distances and enlarge the inter-class margins simultaneously for enhancing the learning ability of the MoGMM-FC layer in the DS-UI. Experimental results show the DS-UI outperforms the state-of-the-art UI methods in misclassification detection. We further evaluate the DS-UI in open-set out-of-domain/-distribution detection and find statistically significant improvements. Visualizations of the feature spaces demonstrate the superiority of the DS-UI.