论文标题

广义各向异性$κ$ -COOKBOOK:ULYSSES电子数据的2D拟合

Generalized anisotropic $κ$-cookbook: 2D fitting of Ulysses electron data

论文作者

Scherer, Klaus, Husidic, Edin, Lazar, Marian, Fichtner, Horst

论文摘要

空间等离子体中的观察揭示了具有各向异性的热平衡的粒子速度分布(例如,平行漂移或/和不同的温度,$ t_ \ parallel $ - 并行$ - 并行和$ t_ \ perp $ - perpendicular,具有背景磁场,以及多个quasithermal and propertive and propertive and propertiase and propertials and propertials。在本文中概括了最近引入的(各向同性)$κ$ -cookBook,以涵盖观测值报告的所有这些各向异性和多组分分布。我们在速度矩中得出一般的分析表达式,并表明获得的常见(Bi-)Maxwellian和(Bi-)$κ-$分布是作为广义各向异性$κ$ -Cookbook(或食谱)的限制案例。基于此概括,引入了一种新的2D拟合程序,与广泛用于量化观察到的分布的主要特性的1D拟合方法相比,置信度提高了。非线性最小二乘拟合被LED {应用于通过Ulysses航天器测量的电子数据集},证实存在三个不同种群的存在,一个二磷酸核心和两个外皮(Halo和Strahl)组件。通常,最佳的整体拟合度是由麦克斯韦人和两个广义$κ$分布的总和给出的。

Observations in space plasmas reveal particle velocity distributions out of thermal equilibrium, with anisotropies (e.g., parallel drifts or/and different temperatures, $T_\parallel$ - parallel and $T_\perp$ - perpendicular, with respect to the background magnetic field), and multiple quasithermal and suprathermal populations with different properties. The recently introduced (isotropic) $κ$-cookbook is generalized in the present paper to cover all these cases of anisotropic and multi-component distributions reported by the observations. We derive general analytical expressions for the velocity moments and show that the common (bi-)Maxwellian and (bi-)$κ-$distributions are obtained as limiting cases of the generalized anisotropic $κ$-cookbook (or recipes). Based on this generalization, a new 2D fitting procedure is introduced, with an improved level of confidence compared to the 1D fitting methods widely used to quantify the main properties of the observed distributions. The nonlinear least-squares fit is \led{applied to electron data sets} measured by the Ulysses spacecraft confirming the existence of three different populations, a quasithermal core and two suprathermal (halo and strahl) components. In general, the best overall fit is given by the sum of a Maxwellian and two generalized $κ$-distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源