论文标题
5G空对地面网络设计和优化:一种深度学习方法
5G Air-to-Ground Network Design and Optimization: A Deep Learning Approach
论文作者
论文摘要
直接空对地面(A2G)通信利用第五代(5G)新广播(NR)可以为飞机在天空中的飞机提供高速宽带连接。 A2G网络部署需要优化各种设计参数,例如地点间距离,每个站点的扇区数量以及扇区天线的倾斜角度。 A2G网络现有工作中的系统级设计指南相当有限。在本文中,提出了一个新颖的基于深度学习的框架,以有效设计和优化5G A2G网络。设计的体系结构包括两个深神经网络(DNN):第一个DNN用于近似于用户吞吐量的5G A2G网络行为,并且第二个DNN作为功能优化器开发,以查找吞吐量 - 最佳部署参数,包括天线上的倾斜角度和间距距离。提供仿真结果以验证提出的模型并揭示系统级设计见解。
Direct air-to-ground (A2G) communications leveraging the fifth-generation (5G) new radio (NR) can provide high-speed broadband in-flight connectivity to aircraft in the sky. A2G network deployment entails optimizing various design parameters such as inter-site distances, number of sectors per site, and the up-tilt angles of sector antennas. The system-level design guidelines in the existing work on A2G network are rather limited. In this paper, a novel deep learning-based framework is proposed for efficient design and optimization of a 5G A2G network. The devised architecture comprises two deep neural networks (DNNs): the first DNN is used for approximating the 5G A2G network behavior in terms of user throughput, and the second DNN is developed as a function optimizer to find the throughput-optimal deployment parameters including antenna up-tilt angles and inter-site distances. Simulation results are provided to validate the proposed model and reveal system-level design insights.