论文标题

对称函数和弹簧表示

Symmetric functions and Springer representations

论文作者

Kato, Syu

论文摘要

Kazhdan [以色列J. Math。 {\ bf 28}(1977)],后者用Hall-Littlewood的$ Q $ functions by Green [Trans。阿米尔。数学。 Soc。 (1955)]。在本文中,我们提供了一个纯粹的代数证明,即$ \ mathop {gl}(n)$的(总)弹簧表示是$ \ mathrm {ext} $ - 彼此之间的正交形式,并表明它与对称函数环的自然分类兼容。

The characters of the (total) Springer representations are identified with the Green functions by Kazhdan [Israel J. Math. {\bf 28} (1977)], and the latter are identified with Hall-Littlewood's $Q$-functions by Green [Trans. Amer. Math. Soc. (1955)]. In this paper, we present a purely algebraic proof that the (total) Springer representations of $\mathop{GL} ( n )$ are $\mathrm{Ext}$-orthogonal to each other, and show that it is compatible with the natural categorification of the ring of symmetric functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源