论文标题

检测自然环境中MHealth干预措施的接受度

Detecting Receptivity for mHealth Interventions in the Natural Environment

论文作者

Mishra, Varun, Künzler, Florian, Kramer, Jan-Niklas, Fleisch, Elgar, Kowatsch, Tobias, Kotz, David

论文摘要

Jitai是一种新兴技术,可以通过在正确的时间提供正确的类型和支持来支持健康行为。 Jitais的一个关键方面是适当地定时提供干预措施,以确保用户接受并准备好处理和使用所提供的支持。一些先前的作品探索了上下文的关联和一些有关接受性的用户特定特征,并建立了研究后的机器学习模型来检测接受性。但是,要进行有效的干预交付,Jitai系统需要就用户的接受性做出瞬间决定。为此,我们进行了一项研究,在该研究中,我们部署了机器学习模型,以检测自然环境中的接受度,即在自由生活条件下。 我们利用了有关对Jitais接受的事先工作,并部署了基于聊天机器人的数字教练〜-艾莉〜-提供了身体活性干预措施,并激发了参与者以实现他们的步骤目标。我们将原始的Ally〜App扩展到包括两种类型的机器学习模型,它们使用了有关一个人何时接受的上下文信息:a \ textIt {static Model \/}在研究开始之前建立,并为所有参与者而保持持续不变,并保持了\ textit {apoptive {适应性模型\/}的持续学习,并不断地学习了个人参与者的接受性和研究人员的接受性。为了进行比较,我们包括了一个随机时间发送干预消息的\ textit {Control Model \/}。该应用程序随机选择了每个干预消息的交付模型。我们观察到,与对照模型相比,机器学习模型的接受度提高了40 \%。此外,我们评估了不同模型的时间动力学,并观察到在整个研究过程中对来自自适应模型的信息的接受能力有所增加。

JITAI is an emerging technique with great potential to support health behavior by providing the right type and amount of support at the right time. A crucial aspect of JITAIs is properly timing the delivery of interventions, to ensure that a user is receptive and ready to process and use the support provided. Some prior works have explored the association of context and some user-specific traits on receptivity, and have built post-study machine-learning models to detect receptivity. For effective intervention delivery, however, a JITAI system needs to make in-the-moment decisions about a user's receptivity. To this end, we conducted a study in which we deployed machine-learning models to detect receptivity in the natural environment, i.e., in free-living conditions. We leveraged prior work regarding receptivity to JITAIs and deployed a chatbot-based digital coach~-- Ally~-- that provided physical-activity interventions and motivated participants to achieve their step goals. We extended the original Ally~app to include two types of machine-learning model that used contextual information about a person to predict when a person is receptive: a \textit{static model\/} that was built before the study started and remained constant for all participants and an \textit{adaptive model\/} that continuously learned the receptivity of individual participants and updated itself as the study progressed. For comparison, we included a \textit{control model\/} that sent intervention messages at random times. The app randomly selected a delivery model for each intervention message. We observed that the machine-learning models led up to a 40\% improvement in receptivity as compared to the control model. Further, we evaluated the temporal dynamics of the different models and observed that receptivity to messages from the adaptive model increased over the course of the study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源