论文标题

贝克型身份:新组​​合证明和适用于$ t $ mod $ r $的零件定理

Beck-type identities: new combinatorial proofs and a theorem for parts congruent to $t$ mod $r$

论文作者

Ballantine, Cristina, Welch, Amanda

论文摘要

令$ \ Mathcal o_r(n)$为$ r $ $ n $,$ n $,$ \ nathcal d_r(n)$的$ r $的分区集,$ n $的分区集,最多重复$ r-1 $ times,$ \ mathcal o_ {1,r}(1,r}(n)$的$ $ REPRITION $ REPRIAS $ REPART(可能会重复)(可能是$)的零件(可能是$) d_ {1,r}(n)$是一组分区,其中一个部分至少出现$ r $ times。如果$ e_ {r,t}(n)$在所有分区中与$ \ mathcal o_r(n)$在所有分区中的一致的零件数量超过了不同的零件数量,则在$ \ mathcal d_r d_r d_r d_r d_r(n)$,$ e_ e_ e _ e_ e _ e _ ph y y Mathcal $ t $中的数量至少出现在所有分区中o_ {1,r}(n)| = | \ Mathcal d_ {1,r}(n)| $。我们使用Xiong和Keith引起的双眼进行了分析和组合证明这一点。作为推论,我们获得了第一个beck -type身份,即$ \ nathcal {o} _r(n)$中所有分区中所有分区中的零件数量的过剩,这是所有分区中$ \ Mathcal {d} _r(d} _r(d} _r(d} _r(n)$(n)$(n)$(n)$(n)$(r- 1)的零件数量, $(r -1)| \ Mathcal {d} _ {1,r}(n)| $。我们的工作为这种结果提供了新的组合证明,该证明不使用Graisher的两次射击。我们还为第二个贝克型身份提供了基于Xiong-keith bifaction的新组合证明,该身份先前已使用Glaisher的培养。

Let $\mathcal O_r(n)$ be the set of $r$-regular partitions of $n$, $\mathcal D_r(n)$ the set of partitions of $n$ with parts repeated at most $r-1$ times, $\mathcal O_{1,r}(n)$ the set of partitions with exactly one part (possibly repeated) divisible by $r$, and let $\mathcal D_{1,r}(n)$ be the set of partitions in which exactly one part appears at least $r$ times. If $E_{r, t}(n)$ is the excess in the number of parts congruent to $t \pmod r$ in all partitions in $\mathcal O_r(n)$ over the number of different parts appearing at least $t$ times in all partitions in $\mathcal D_r(n)$, then $E_{r, t}(n) = |\mathcal O_{1,r}(n)| = |\mathcal D_{1,r}(n)|$. We prove this analytically and combinatorially using a bijection due to Xiong and Keith. As a corollary, we obtain the first Beck-type identity, i.e., the excess in the number of parts in all partitions in $\mathcal{O}_r(n)$ over the number of parts in all partitions in $\mathcal{D}_r(n)$ equals $(r - 1)|\mathcal{O}_{1,r}(n)|$ and also $(r - 1)|\mathcal{D}_{1,r}(n)|$. Our work provides a new combinatorial proof of this result that does not use Glaisher's bijection. We also give a new combinatorial proof based of the Xiong-Keith bijection for a second Beck-Type identity that has been proved previously using Glaisher's bijection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源