论文标题
COVID-19在意大利的传播的现象学描述:人流动性作为控制感染案例传播的主要因素
Phenomenological description of spread of Covid-19 in Italy: people mobility as main factor controlling propagation of infection cases
论文作者
论文摘要
从2019年底开始,冠状病毒(Covid-19)的传播在意大利确定了几种旨在防止卫生系统饱和的干预措施。我们通过提出一个均值场模型来检查此类措施的影响,该模型根据简单的扩散过程描述感染的传播,在该过程中,所有可观察的变量(仍然对感染,住院和死亡人数,治愈的人,已治愈的人以及感染的人数仍然呈阳性的人数,感染的人数)取决于平均参数,即相交,并依赖于感染群体,并依赖于感染分布,并依赖于感染范围。尽管该模型不如文献中的其他模型复杂,但它使我们能够直接将流行病统计信息(住院案例,死亡人数,受感染人数等)与明确定义的可观察到的身体数量联系起来:每天任何人会遇到的任何人的平均人数。该模型非常适合流行数据,并使我们能够严格将住院病例的数量和爆发的死亡人数的时间演变与人流动的变化联系起来,这是由于在意大利实施了渐进性限制,直到今天(2020年11月15日)。
The spread of the coronavirus (COVID-19), starting in late 2019, has determined in Italy several interventions aimed to prevent saturation of the health system. We have examined the effects of such measures by proposing a mean-field model describing the spread of the infection based on a simple diffusion process where all the observable variables (number of people still positive to the infection, hospitalized and fatalities cases, healed people, and total number of people that has contracted the infection) depend on average parameters, namely diffusion coefficient, infection cross-section, and population density. Although this model is less sophisticated than other models in the literature, it allows us to directly relate the trend of the epidemic statistical information (hospitalized cases, number of fatalities, number of infected people, etc.) to a well defined observable physical quantity: the average number of people that any individual meets per day. The model fits very well the epidemic data, and allows us to strictly relate the time evolution of the number of hospitalized case and fatalities of the outbreak to the change of people mobility, consequent to the implementation of progressive restrictions in Italy, running until the present days (November the 15th, 2020).